Spaces:
Sleeping
Sleeping
朱东升
commited on
Commit
·
6df6e43
1
Parent(s):
3399cd9
update17
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ from datetime import datetime
|
|
15 |
from tqdm.auto import tqdm
|
16 |
from src.containerized_eval import eval_string_script
|
17 |
|
18 |
-
#
|
19 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
20 |
src_dir = os.path.join(current_dir, "src")
|
21 |
if current_dir not in sys.path:
|
@@ -23,33 +23,30 @@ if current_dir not in sys.path:
|
|
23 |
if src_dir not in sys.path:
|
24 |
sys.path.append(src_dir)
|
25 |
|
26 |
-
#
|
27 |
task_queue = queue.Queue()
|
28 |
-
#
|
29 |
task_status = {}
|
30 |
-
#
|
31 |
task_history = []
|
32 |
-
#
|
33 |
lock = threading.Lock()
|
34 |
-
#
|
35 |
worker_threads = multiprocessing.cpu_count()
|
36 |
-
#
|
37 |
running = True
|
38 |
-
#
|
39 |
task_type_times = {}
|
40 |
|
41 |
def queue_processor():
|
42 |
-
"""
|
43 |
while running:
|
44 |
try:
|
45 |
-
# 从队列中获取任务,如果队列为空等待0.1
|
46 |
task_id, input_data, request_time = task_queue.get(timeout=0.1)
|
47 |
with lock:
|
48 |
task_status[task_id]['status'] = 'processing'
|
49 |
task_status[task_id]['start_time'] = time.time()
|
50 |
|
51 |
-
# 识别任务特征以估计完成时间
|
52 |
-
# 例如:语言类型、代码大小等
|
53 |
if isinstance(input_data, list) and len(input_data) > 0:
|
54 |
sample_task = input_data[0]
|
55 |
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
|
@@ -63,10 +60,8 @@ def queue_processor():
|
|
63 |
'complexity': task_complexity
|
64 |
}
|
65 |
|
66 |
-
# 处理任务
|
67 |
result = evaluate(input_data)
|
68 |
|
69 |
-
# 更新任务状态
|
70 |
end_time = time.time()
|
71 |
process_time = end_time - task_status[task_id]['start_time']
|
72 |
|
@@ -76,7 +71,6 @@ def queue_processor():
|
|
76 |
task_status[task_id]['end_time'] = end_time
|
77 |
task_status[task_id]['process_time'] = process_time
|
78 |
|
79 |
-
# 更新任务类型到处理时间的映射
|
80 |
if 'estimated_factors' in task_status[task_id]:
|
81 |
factors = task_status[task_id]['estimated_factors']
|
82 |
key = f"{factors['language']}_{factors['complexity']}"
|
@@ -84,13 +78,10 @@ def queue_processor():
|
|
84 |
if key not in task_type_times:
|
85 |
task_type_times[key] = []
|
86 |
|
87 |
-
# 记录此类型任务的处理时间
|
88 |
task_type_times[key].append(process_time / factors['size'])
|
89 |
-
# 只保留最近的10个记录
|
90 |
if len(task_type_times[key]) > 10:
|
91 |
task_type_times[key] = task_type_times[key][-10:]
|
92 |
|
93 |
-
# 更新任务历史
|
94 |
task_history.append({
|
95 |
'task_id': task_id,
|
96 |
'request_time': request_time,
|
@@ -98,15 +89,12 @@ def queue_processor():
|
|
98 |
'status': 'completed',
|
99 |
'factors': task_status[task_id].get('estimated_factors', {})
|
100 |
})
|
101 |
-
# 只保留最近20个任务
|
102 |
while len(task_history) > 20:
|
103 |
task_history.pop(0)
|
104 |
|
105 |
-
# 标记任务完成
|
106 |
task_queue.task_done()
|
107 |
|
108 |
except queue.Empty:
|
109 |
-
# 队列为空,继续等待
|
110 |
continue
|
111 |
except Exception as e:
|
112 |
if 'task_id' in locals():
|
@@ -117,15 +105,10 @@ def queue_processor():
|
|
117 |
task_queue.task_done()
|
118 |
|
119 |
def _estimate_task_complexity(tasks):
|
120 |
-
"""
|
121 |
|
122 |
-
|
123 |
-
tasks: 任务列表
|
124 |
-
|
125 |
-
Returns:
|
126 |
-
str: 复杂度评级 ('simple', 'medium', 'complex')
|
127 |
"""
|
128 |
-
# 基于代码和测试的长度评估复杂度
|
129 |
total_code_length = 0
|
130 |
count = 0
|
131 |
|
@@ -143,7 +126,7 @@ def _estimate_task_complexity(tasks):
|
|
143 |
count += 1
|
144 |
|
145 |
if count == 0:
|
146 |
-
return 'medium'
|
147 |
|
148 |
avg_length = total_code_length / count
|
149 |
|
@@ -155,14 +138,7 @@ def _estimate_task_complexity(tasks):
|
|
155 |
return 'complex'
|
156 |
|
157 |
def evaluate(input_data):
|
158 |
-
"""
|
159 |
-
|
160 |
-
Args:
|
161 |
-
input_data: 列表(批量处理多个测试用例)
|
162 |
-
|
163 |
-
Returns:
|
164 |
-
list: 包含评估结果的列表
|
165 |
-
"""
|
166 |
try:
|
167 |
if not isinstance(input_data, list):
|
168 |
return {"status": "Exception", "error": "Input must be a list"}
|
@@ -186,14 +162,7 @@ def evaluate(input_data):
|
|
186 |
return {"status": "Exception", "error": str(e)}
|
187 |
|
188 |
def evaluate_single_case(input_data):
|
189 |
-
"""
|
190 |
-
|
191 |
-
Args:
|
192 |
-
input_data: 字典(包含代码信息)
|
193 |
-
|
194 |
-
Returns:
|
195 |
-
dict: 包含评估结果的字典
|
196 |
-
"""
|
197 |
try:
|
198 |
if not isinstance(input_data, dict):
|
199 |
return {"status": "Exception", "error": "Input item must be a dictionary"}
|
@@ -218,17 +187,8 @@ def evaluate_single_case(input_data):
|
|
218 |
return {"status": "Exception", "error": str(e)}
|
219 |
|
220 |
def evaluate_code(code, language):
|
221 |
-
"""
|
222 |
-
|
223 |
-
Args:
|
224 |
-
code (str): 要评估的代码
|
225 |
-
language (str): 编程语言
|
226 |
-
|
227 |
-
Returns:
|
228 |
-
dict: 包含评估结果的字典
|
229 |
-
"""
|
230 |
try:
|
231 |
-
# 使用containerized_eval中的eval_string_script函数
|
232 |
result = eval_string_script(language, code)
|
233 |
return result
|
234 |
|
@@ -236,17 +196,7 @@ def evaluate_code(code, language):
|
|
236 |
return {"status": "Exception", "error": str(e)}
|
237 |
|
238 |
def synchronous_evaluate(input_data):
|
239 |
-
"""
|
240 |
-
|
241 |
-
这个函数会阻塞直到评估完成,然后返回结果
|
242 |
-
|
243 |
-
Args:
|
244 |
-
input_data: 要评估的输入数据
|
245 |
-
|
246 |
-
Returns:
|
247 |
-
dict: 评估结果
|
248 |
-
"""
|
249 |
-
# a) 估计此任务的特征
|
250 |
if isinstance(input_data, list) and len(input_data) > 0:
|
251 |
sample_task = input_data[0]
|
252 |
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
|
@@ -257,25 +207,21 @@ def synchronous_evaluate(input_data):
|
|
257 |
task_size = 1
|
258 |
task_complexity = 'medium'
|
259 |
|
260 |
-
# b) 估计完成时间用于前端显示
|
261 |
estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
|
262 |
estimated_total_time = estimated_time_per_task * task_size
|
263 |
|
264 |
-
# 获取队列当前状态
|
265 |
queue_info = get_queue_status()
|
266 |
waiting_tasks = queue_info['waiting_tasks']
|
267 |
|
268 |
-
# 创建任务
|
269 |
task_id = str(uuid.uuid4())
|
270 |
request_time = time.time()
|
271 |
|
272 |
with lock:
|
273 |
-
# 创建任务状态记录
|
274 |
task_status[task_id] = {
|
275 |
'status': 'queued',
|
276 |
'queued_time': request_time,
|
277 |
'queue_position': task_queue.qsize() + 1,
|
278 |
-
'synchronous': True,
|
279 |
'estimated_factors': {
|
280 |
'language': language,
|
281 |
'size': task_size,
|
@@ -284,45 +230,30 @@ def synchronous_evaluate(input_data):
|
|
284 |
'estimated_time': estimated_total_time
|
285 |
}
|
286 |
|
287 |
-
# 将任务添加到队列
|
288 |
task_queue.put((task_id, input_data, request_time))
|
289 |
|
290 |
-
# 等待任务完成
|
291 |
while True:
|
292 |
with lock:
|
293 |
if task_id in task_status:
|
294 |
status = task_status[task_id]['status']
|
295 |
if status == 'completed':
|
296 |
result = task_status[task_id]['result']
|
297 |
-
# 任务完成后清理状态
|
298 |
task_status.pop(task_id, None)
|
299 |
return result
|
300 |
elif status == 'error':
|
301 |
-
error = task_status[task_id].get('error', '
|
302 |
-
# 任务出错后清理状态
|
303 |
task_status.pop(task_id, None)
|
304 |
return {"status": "Exception", "error": error}
|
305 |
|
306 |
-
# 短暂睡眠避免CPU占用过高
|
307 |
time.sleep(0.1)
|
308 |
|
309 |
def _get_estimated_time_for_task(language, complexity):
|
310 |
-
"""
|
311 |
-
|
312 |
-
Args:
|
313 |
-
language: 编程语言
|
314 |
-
complexity: 任务复杂度
|
315 |
-
|
316 |
-
Returns:
|
317 |
-
float: 估计的处理时间(秒)
|
318 |
-
"""
|
319 |
key = f"{language}_{complexity}"
|
320 |
|
321 |
-
# 如果有历史数据,使用中位数作为估计值
|
322 |
if key in task_type_times and len(task_type_times[key]) > 0:
|
323 |
return np.median(task_type_times[key])
|
324 |
|
325 |
-
# 否则使用基于复杂度的默认估计值
|
326 |
if complexity == 'simple':
|
327 |
return 1.0
|
328 |
elif complexity == 'medium':
|
@@ -331,15 +262,7 @@ def _get_estimated_time_for_task(language, complexity):
|
|
331 |
return 8.0
|
332 |
|
333 |
def enqueue_task(input_data):
|
334 |
-
"""
|
335 |
-
|
336 |
-
Args:
|
337 |
-
input_data: 要处理的任务数据
|
338 |
-
|
339 |
-
Returns:
|
340 |
-
dict: 包含任务ID和状态的字典
|
341 |
-
"""
|
342 |
-
# 估计任务特征和处理时间
|
343 |
if isinstance(input_data, list) and len(input_data) > 0:
|
344 |
sample_task = input_data[0]
|
345 |
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
|
@@ -357,7 +280,6 @@ def enqueue_task(input_data):
|
|
357 |
request_time = time.time()
|
358 |
|
359 |
with lock:
|
360 |
-
# 创建任务状态记录
|
361 |
task_status[task_id] = {
|
362 |
'status': 'queued',
|
363 |
'queued_time': request_time,
|
@@ -370,11 +292,9 @@ def enqueue_task(input_data):
|
|
370 |
'estimated_time': estimated_total_time
|
371 |
}
|
372 |
|
373 |
-
# 获取队列状态以计算等待时间
|
374 |
queue_info = get_queue_status()
|
375 |
est_wait = queue_info['estimated_wait']
|
376 |
|
377 |
-
# 将任务添加到队列
|
378 |
task_queue.put((task_id, input_data, request_time))
|
379 |
|
380 |
return {
|
@@ -386,34 +306,21 @@ def enqueue_task(input_data):
|
|
386 |
}
|
387 |
|
388 |
def check_status(task_id):
|
389 |
-
"""
|
390 |
-
|
391 |
-
Args:
|
392 |
-
task_id: 任务ID
|
393 |
-
|
394 |
-
Returns:
|
395 |
-
dict: 包含任务状态的字典
|
396 |
-
"""
|
397 |
with lock:
|
398 |
if task_id not in task_status:
|
399 |
return {'status': 'not_found'}
|
400 |
|
401 |
status_info = task_status[task_id].copy()
|
402 |
|
403 |
-
# 如果任务已完成,从状态字典中移除(避免内存泄漏)
|
404 |
if status_info['status'] in ['completed', 'error'] and time.time() - status_info.get('end_time', 0) > 3600:
|
405 |
task_status.pop(task_id, None)
|
406 |
|
407 |
return status_info
|
408 |
|
409 |
def get_queue_status():
|
410 |
-
"""
|
411 |
-
|
412 |
-
Returns:
|
413 |
-
dict: 包含队列状态的字典
|
414 |
-
"""
|
415 |
with lock:
|
416 |
-
# 获取队列中的所有任务
|
417 |
queued_tasks = [t for t in task_status.values() if t['status'] == 'queued']
|
418 |
processing_tasks = [t for t in task_status.values() if t['status'] == 'processing']
|
419 |
|
@@ -421,61 +328,45 @@ def get_queue_status():
|
|
421 |
active_tasks = len(processing_tasks)
|
422 |
waiting_tasks = len(queued_tasks)
|
423 |
|
424 |
-
# 更准确地估计等待时间
|
425 |
-
# 1. 计算当前处理中任务的剩余时间
|
426 |
remaining_processing_time = 0
|
427 |
for task in processing_tasks:
|
428 |
-
# 如果任务有开始时间和估计总时间
|
429 |
if 'start_time' in task and 'estimated_time' in task:
|
430 |
elapsed = time.time() - task['start_time']
|
431 |
-
# 剩余时间 = 估计总时间 - 已经过去的时间
|
432 |
remaining = max(0, task['estimated_time'] - elapsed)
|
433 |
remaining_processing_time += remaining
|
434 |
else:
|
435 |
-
# 默认假设还需要2秒
|
436 |
remaining_processing_time += 2
|
437 |
|
438 |
-
# 使用动态均衡:根据工作线程数量平衡负载
|
439 |
if active_tasks > 0:
|
440 |
remaining_processing_time = remaining_processing_time / min(active_tasks, worker_threads)
|
441 |
|
442 |
-
# 2. 计算排队中任务的估计处理时间
|
443 |
queued_processing_time = 0
|
444 |
for task in queued_tasks:
|
445 |
if 'estimated_time' in task:
|
446 |
queued_processing_time += task['estimated_time']
|
447 |
else:
|
448 |
-
# 默认假设每个任务5秒
|
449 |
queued_processing_time += 5
|
450 |
|
451 |
-
# 考虑并行处理:分摊到可用工作线程
|
452 |
if worker_threads > 0 and queued_processing_time > 0:
|
453 |
queued_processing_time = queued_processing_time / worker_threads
|
454 |
|
455 |
-
# 总估计等待时间
|
456 |
estimated_wait = remaining_processing_time + queued_processing_time
|
457 |
|
458 |
-
# 应用统计校正:使用历史数据调整预测
|
459 |
if task_history:
|
460 |
-
# 计算历史预测与实际处理时间的比例
|
461 |
prediction_ratios = []
|
462 |
for task in task_history:
|
463 |
if 'factors' in task and 'estimated_time' in task:
|
464 |
prediction_ratios.append(task['process_time'] / task['estimated_time'])
|
465 |
|
466 |
-
# 如果有足够数据,使用中位数比例调整当前预测
|
467 |
if prediction_ratios:
|
468 |
correction_factor = np.median(prediction_ratios)
|
469 |
-
# 应用校正因子,但限制在合理范围内
|
470 |
correction_factor = max(0.5, min(2.0, correction_factor))
|
471 |
estimated_wait *= correction_factor
|
472 |
|
473 |
-
# 确保等待时间有意义
|
474 |
estimated_wait = max(0.1, estimated_wait)
|
475 |
if waiting_tasks == 0 and active_tasks == 0:
|
476 |
estimated_wait = 0
|
477 |
|
478 |
-
# 获取最近处理的任务
|
479 |
recent_tasks = task_history[-5:] if task_history else []
|
480 |
|
481 |
return {
|
@@ -488,31 +379,20 @@ def get_queue_status():
|
|
488 |
}
|
489 |
|
490 |
def format_time(seconds):
|
491 |
-
"""
|
492 |
-
|
493 |
-
Args:
|
494 |
-
seconds: 秒数
|
495 |
-
|
496 |
-
Returns:
|
497 |
-
str: 格式化的时间字符串
|
498 |
-
"""
|
499 |
if seconds < 60:
|
500 |
-
return f"{seconds:.1f}
|
501 |
elif seconds < 3600:
|
502 |
minutes = int(seconds / 60)
|
503 |
seconds = seconds % 60
|
504 |
-
return f"{minutes}
|
505 |
else:
|
506 |
hours = int(seconds / 3600)
|
507 |
minutes = int((seconds % 3600) / 60)
|
508 |
-
return f"{hours}
|
509 |
|
510 |
def ui_get_queue_info():
|
511 |
-
"""
|
512 |
-
|
513 |
-
Returns:
|
514 |
-
str: 包含队列信息的HTML
|
515 |
-
"""
|
516 |
queue_info = get_queue_status()
|
517 |
|
518 |
tasks_html = ""
|
@@ -525,47 +405,46 @@ def ui_get_queue_info():
|
|
525 |
</tr>
|
526 |
"""
|
527 |
|
528 |
-
# 如果没有任务历史,显示提示信息
|
529 |
if not tasks_html:
|
530 |
tasks_html = """
|
531 |
<tr>
|
532 |
-
<td colspan="3" style="text-align: center; padding: 20px;"
|
533 |
</tr>
|
534 |
"""
|
535 |
|
536 |
return f"""
|
537 |
<div class="dashboard">
|
538 |
<div class="queue-info-card main-card">
|
539 |
-
<h3 class="card-title"
|
540 |
<div class="queue-stats">
|
541 |
<div class="stat-item">
|
542 |
<div class="stat-value">{queue_info['waiting_tasks']}</div>
|
543 |
-
<div class="stat-label"
|
544 |
</div>
|
545 |
<div class="stat-item">
|
546 |
<div class="stat-value">{queue_info['active_tasks']}</div>
|
547 |
-
<div class="stat-label"
|
548 |
</div>
|
549 |
<div class="stat-item">
|
550 |
<div class="stat-value">{queue_info['worker_threads']}</div>
|
551 |
-
<div class="stat-label"
|
552 |
</div>
|
553 |
</div>
|
554 |
|
555 |
<div class="wait-time">
|
556 |
-
<p><b
|
557 |
-
<p class="last-update"><small
|
558 |
</div>
|
559 |
</div>
|
560 |
|
561 |
<div class="queue-info-card history-card">
|
562 |
-
<h3 class="card-title"
|
563 |
<table class="recent-tasks">
|
564 |
<thead>
|
565 |
<tr>
|
566 |
-
<th
|
567 |
-
<th
|
568 |
-
<th
|
569 |
</tr>
|
570 |
</thead>
|
571 |
<tbody>
|
@@ -577,17 +456,16 @@ def ui_get_queue_info():
|
|
577 |
"""
|
578 |
|
579 |
def launch_workers():
|
580 |
-
"""
|
581 |
global running
|
582 |
running = True
|
583 |
|
584 |
-
# 创建工作线程
|
585 |
for _ in range(worker_threads):
|
586 |
worker = threading.Thread(target=queue_processor)
|
587 |
worker.daemon = True
|
588 |
worker.start()
|
589 |
|
590 |
-
#
|
591 |
custom_css = """
|
592 |
.container {
|
593 |
max-width: 1200px;
|
@@ -741,36 +619,36 @@ button.primary:hover {
|
|
741 |
}
|
742 |
"""
|
743 |
|
744 |
-
#
|
745 |
launch_workers()
|
746 |
|
747 |
-
#
|
748 |
with gr.Blocks(css=custom_css) as demo:
|
749 |
-
gr.Markdown("#
|
750 |
-
gr.Markdown("
|
751 |
|
752 |
with gr.Row():
|
753 |
with gr.Column(scale=3):
|
754 |
-
#
|
755 |
queue_info_html = gr.HTML()
|
756 |
-
refresh_queue_btn = gr.Button("
|
757 |
|
758 |
-
#
|
759 |
with gr.Row(visible=False):
|
760 |
api_input = gr.JSON()
|
761 |
api_output = gr.JSON()
|
762 |
|
763 |
-
#
|
764 |
def update_queue_info():
|
765 |
return ui_get_queue_info()
|
766 |
|
767 |
-
#
|
768 |
demo.load(update_queue_info, None, queue_info_html, every=3)
|
769 |
|
770 |
-
#
|
771 |
refresh_queue_btn.click(update_queue_info, None, queue_info_html)
|
772 |
|
773 |
-
#
|
774 |
demo.queue()
|
775 |
evaluate_endpoint = demo.load(fn=synchronous_evaluate, inputs=api_input, outputs=api_output, api_name="evaluate")
|
776 |
|
@@ -778,5 +656,5 @@ if __name__ == "__main__":
|
|
778 |
try:
|
779 |
demo.launch()
|
780 |
finally:
|
781 |
-
#
|
782 |
running = False
|
|
|
15 |
from tqdm.auto import tqdm
|
16 |
from src.containerized_eval import eval_string_script
|
17 |
|
18 |
+
# Add current directory and src directory to module search path
|
19 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
20 |
src_dir = os.path.join(current_dir, "src")
|
21 |
if current_dir not in sys.path:
|
|
|
23 |
if src_dir not in sys.path:
|
24 |
sys.path.append(src_dir)
|
25 |
|
26 |
+
# Create message queue
|
27 |
task_queue = queue.Queue()
|
28 |
+
# Dictionary to store task status
|
29 |
task_status = {}
|
30 |
+
# List to store task history, max 20 tasks
|
31 |
task_history = []
|
32 |
+
# Lock for shared resources
|
33 |
lock = threading.Lock()
|
34 |
+
# Number of worker threads
|
35 |
worker_threads = multiprocessing.cpu_count()
|
36 |
+
# Flag for running background threads
|
37 |
running = True
|
38 |
+
# Mapping from task type to processing time
|
39 |
task_type_times = {}
|
40 |
|
41 |
def queue_processor():
|
42 |
+
"""Process tasks in the queue"""
|
43 |
while running:
|
44 |
try:
|
|
|
45 |
task_id, input_data, request_time = task_queue.get(timeout=0.1)
|
46 |
with lock:
|
47 |
task_status[task_id]['status'] = 'processing'
|
48 |
task_status[task_id]['start_time'] = time.time()
|
49 |
|
|
|
|
|
50 |
if isinstance(input_data, list) and len(input_data) > 0:
|
51 |
sample_task = input_data[0]
|
52 |
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
|
|
|
60 |
'complexity': task_complexity
|
61 |
}
|
62 |
|
|
|
63 |
result = evaluate(input_data)
|
64 |
|
|
|
65 |
end_time = time.time()
|
66 |
process_time = end_time - task_status[task_id]['start_time']
|
67 |
|
|
|
71 |
task_status[task_id]['end_time'] = end_time
|
72 |
task_status[task_id]['process_time'] = process_time
|
73 |
|
|
|
74 |
if 'estimated_factors' in task_status[task_id]:
|
75 |
factors = task_status[task_id]['estimated_factors']
|
76 |
key = f"{factors['language']}_{factors['complexity']}"
|
|
|
78 |
if key not in task_type_times:
|
79 |
task_type_times[key] = []
|
80 |
|
|
|
81 |
task_type_times[key].append(process_time / factors['size'])
|
|
|
82 |
if len(task_type_times[key]) > 10:
|
83 |
task_type_times[key] = task_type_times[key][-10:]
|
84 |
|
|
|
85 |
task_history.append({
|
86 |
'task_id': task_id,
|
87 |
'request_time': request_time,
|
|
|
89 |
'status': 'completed',
|
90 |
'factors': task_status[task_id].get('estimated_factors', {})
|
91 |
})
|
|
|
92 |
while len(task_history) > 20:
|
93 |
task_history.pop(0)
|
94 |
|
|
|
95 |
task_queue.task_done()
|
96 |
|
97 |
except queue.Empty:
|
|
|
98 |
continue
|
99 |
except Exception as e:
|
100 |
if 'task_id' in locals():
|
|
|
105 |
task_queue.task_done()
|
106 |
|
107 |
def _estimate_task_complexity(tasks):
|
108 |
+
"""Estimate task complexity
|
109 |
|
110 |
+
Returns: 'simple', 'medium', or 'complex'
|
|
|
|
|
|
|
|
|
111 |
"""
|
|
|
112 |
total_code_length = 0
|
113 |
count = 0
|
114 |
|
|
|
126 |
count += 1
|
127 |
|
128 |
if count == 0:
|
129 |
+
return 'medium'
|
130 |
|
131 |
avg_length = total_code_length / count
|
132 |
|
|
|
138 |
return 'complex'
|
139 |
|
140 |
def evaluate(input_data):
|
141 |
+
"""Main function for code evaluation"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
try:
|
143 |
if not isinstance(input_data, list):
|
144 |
return {"status": "Exception", "error": "Input must be a list"}
|
|
|
162 |
return {"status": "Exception", "error": str(e)}
|
163 |
|
164 |
def evaluate_single_case(input_data):
|
165 |
+
"""Evaluate a single code case"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
try:
|
167 |
if not isinstance(input_data, dict):
|
168 |
return {"status": "Exception", "error": "Input item must be a dictionary"}
|
|
|
187 |
return {"status": "Exception", "error": str(e)}
|
188 |
|
189 |
def evaluate_code(code, language):
|
190 |
+
"""Evaluate code in a specific language"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
try:
|
|
|
192 |
result = eval_string_script(language, code)
|
193 |
return result
|
194 |
|
|
|
196 |
return {"status": "Exception", "error": str(e)}
|
197 |
|
198 |
def synchronous_evaluate(input_data):
|
199 |
+
"""Synchronously evaluate code, compatible with original interface"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
if isinstance(input_data, list) and len(input_data) > 0:
|
201 |
sample_task = input_data[0]
|
202 |
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
|
|
|
207 |
task_size = 1
|
208 |
task_complexity = 'medium'
|
209 |
|
|
|
210 |
estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
|
211 |
estimated_total_time = estimated_time_per_task * task_size
|
212 |
|
|
|
213 |
queue_info = get_queue_status()
|
214 |
waiting_tasks = queue_info['waiting_tasks']
|
215 |
|
|
|
216 |
task_id = str(uuid.uuid4())
|
217 |
request_time = time.time()
|
218 |
|
219 |
with lock:
|
|
|
220 |
task_status[task_id] = {
|
221 |
'status': 'queued',
|
222 |
'queued_time': request_time,
|
223 |
'queue_position': task_queue.qsize() + 1,
|
224 |
+
'synchronous': True,
|
225 |
'estimated_factors': {
|
226 |
'language': language,
|
227 |
'size': task_size,
|
|
|
230 |
'estimated_time': estimated_total_time
|
231 |
}
|
232 |
|
|
|
233 |
task_queue.put((task_id, input_data, request_time))
|
234 |
|
|
|
235 |
while True:
|
236 |
with lock:
|
237 |
if task_id in task_status:
|
238 |
status = task_status[task_id]['status']
|
239 |
if status == 'completed':
|
240 |
result = task_status[task_id]['result']
|
|
|
241 |
task_status.pop(task_id, None)
|
242 |
return result
|
243 |
elif status == 'error':
|
244 |
+
error = task_status[task_id].get('error', 'Unknown error')
|
|
|
245 |
task_status.pop(task_id, None)
|
246 |
return {"status": "Exception", "error": error}
|
247 |
|
|
|
248 |
time.sleep(0.1)
|
249 |
|
250 |
def _get_estimated_time_for_task(language, complexity):
|
251 |
+
"""Get estimated processing time for a specific task type"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
key = f"{language}_{complexity}"
|
253 |
|
|
|
254 |
if key in task_type_times and len(task_type_times[key]) > 0:
|
255 |
return np.median(task_type_times[key])
|
256 |
|
|
|
257 |
if complexity == 'simple':
|
258 |
return 1.0
|
259 |
elif complexity == 'medium':
|
|
|
262 |
return 8.0
|
263 |
|
264 |
def enqueue_task(input_data):
|
265 |
+
"""Add task to queue"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
if isinstance(input_data, list) and len(input_data) > 0:
|
267 |
sample_task = input_data[0]
|
268 |
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
|
|
|
280 |
request_time = time.time()
|
281 |
|
282 |
with lock:
|
|
|
283 |
task_status[task_id] = {
|
284 |
'status': 'queued',
|
285 |
'queued_time': request_time,
|
|
|
292 |
'estimated_time': estimated_total_time
|
293 |
}
|
294 |
|
|
|
295 |
queue_info = get_queue_status()
|
296 |
est_wait = queue_info['estimated_wait']
|
297 |
|
|
|
298 |
task_queue.put((task_id, input_data, request_time))
|
299 |
|
300 |
return {
|
|
|
306 |
}
|
307 |
|
308 |
def check_status(task_id):
|
309 |
+
"""Check task status"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
with lock:
|
311 |
if task_id not in task_status:
|
312 |
return {'status': 'not_found'}
|
313 |
|
314 |
status_info = task_status[task_id].copy()
|
315 |
|
|
|
316 |
if status_info['status'] in ['completed', 'error'] and time.time() - status_info.get('end_time', 0) > 3600:
|
317 |
task_status.pop(task_id, None)
|
318 |
|
319 |
return status_info
|
320 |
|
321 |
def get_queue_status():
|
322 |
+
"""Get queue status"""
|
|
|
|
|
|
|
|
|
323 |
with lock:
|
|
|
324 |
queued_tasks = [t for t in task_status.values() if t['status'] == 'queued']
|
325 |
processing_tasks = [t for t in task_status.values() if t['status'] == 'processing']
|
326 |
|
|
|
328 |
active_tasks = len(processing_tasks)
|
329 |
waiting_tasks = len(queued_tasks)
|
330 |
|
|
|
|
|
331 |
remaining_processing_time = 0
|
332 |
for task in processing_tasks:
|
|
|
333 |
if 'start_time' in task and 'estimated_time' in task:
|
334 |
elapsed = time.time() - task['start_time']
|
|
|
335 |
remaining = max(0, task['estimated_time'] - elapsed)
|
336 |
remaining_processing_time += remaining
|
337 |
else:
|
|
|
338 |
remaining_processing_time += 2
|
339 |
|
|
|
340 |
if active_tasks > 0:
|
341 |
remaining_processing_time = remaining_processing_time / min(active_tasks, worker_threads)
|
342 |
|
|
|
343 |
queued_processing_time = 0
|
344 |
for task in queued_tasks:
|
345 |
if 'estimated_time' in task:
|
346 |
queued_processing_time += task['estimated_time']
|
347 |
else:
|
|
|
348 |
queued_processing_time += 5
|
349 |
|
|
|
350 |
if worker_threads > 0 and queued_processing_time > 0:
|
351 |
queued_processing_time = queued_processing_time / worker_threads
|
352 |
|
|
|
353 |
estimated_wait = remaining_processing_time + queued_processing_time
|
354 |
|
|
|
355 |
if task_history:
|
|
|
356 |
prediction_ratios = []
|
357 |
for task in task_history:
|
358 |
if 'factors' in task and 'estimated_time' in task:
|
359 |
prediction_ratios.append(task['process_time'] / task['estimated_time'])
|
360 |
|
|
|
361 |
if prediction_ratios:
|
362 |
correction_factor = np.median(prediction_ratios)
|
|
|
363 |
correction_factor = max(0.5, min(2.0, correction_factor))
|
364 |
estimated_wait *= correction_factor
|
365 |
|
|
|
366 |
estimated_wait = max(0.1, estimated_wait)
|
367 |
if waiting_tasks == 0 and active_tasks == 0:
|
368 |
estimated_wait = 0
|
369 |
|
|
|
370 |
recent_tasks = task_history[-5:] if task_history else []
|
371 |
|
372 |
return {
|
|
|
379 |
}
|
380 |
|
381 |
def format_time(seconds):
|
382 |
+
"""Format time into readable format"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
383 |
if seconds < 60:
|
384 |
+
return f"{seconds:.1f} seconds"
|
385 |
elif seconds < 3600:
|
386 |
minutes = int(seconds / 60)
|
387 |
seconds = seconds % 60
|
388 |
+
return f"{minutes}m {seconds:.1f}s"
|
389 |
else:
|
390 |
hours = int(seconds / 3600)
|
391 |
minutes = int((seconds % 3600) / 60)
|
392 |
+
return f"{hours}h {minutes}m"
|
393 |
|
394 |
def ui_get_queue_info():
|
395 |
+
"""Get queue info for UI"""
|
|
|
|
|
|
|
|
|
396 |
queue_info = get_queue_status()
|
397 |
|
398 |
tasks_html = ""
|
|
|
405 |
</tr>
|
406 |
"""
|
407 |
|
|
|
408 |
if not tasks_html:
|
409 |
tasks_html = """
|
410 |
<tr>
|
411 |
+
<td colspan="3" style="text-align: center; padding: 20px;">No historical tasks</td>
|
412 |
</tr>
|
413 |
"""
|
414 |
|
415 |
return f"""
|
416 |
<div class="dashboard">
|
417 |
<div class="queue-info-card main-card">
|
418 |
+
<h3 class="card-title">Queue Status Monitor</h3>
|
419 |
<div class="queue-stats">
|
420 |
<div class="stat-item">
|
421 |
<div class="stat-value">{queue_info['waiting_tasks']}</div>
|
422 |
+
<div class="stat-label">Waiting</div>
|
423 |
</div>
|
424 |
<div class="stat-item">
|
425 |
<div class="stat-value">{queue_info['active_tasks']}</div>
|
426 |
+
<div class="stat-label">Processing</div>
|
427 |
</div>
|
428 |
<div class="stat-item">
|
429 |
<div class="stat-value">{queue_info['worker_threads']}</div>
|
430 |
+
<div class="stat-label">Worker Threads</div>
|
431 |
</div>
|
432 |
</div>
|
433 |
|
434 |
<div class="wait-time">
|
435 |
+
<p><b>Current Estimated Wait Time:</b> {format_time(queue_info['estimated_wait'])}</p>
|
436 |
+
<p class="last-update"><small>Last update: {datetime.now().strftime('%H:%M:%S')}</small></p>
|
437 |
</div>
|
438 |
</div>
|
439 |
|
440 |
<div class="queue-info-card history-card">
|
441 |
+
<h3 class="card-title">Recently Processed Tasks</h3>
|
442 |
<table class="recent-tasks">
|
443 |
<thead>
|
444 |
<tr>
|
445 |
+
<th>Task ID</th>
|
446 |
+
<th>Request Time</th>
|
447 |
+
<th>Processing Time</th>
|
448 |
</tr>
|
449 |
</thead>
|
450 |
<tbody>
|
|
|
456 |
"""
|
457 |
|
458 |
def launch_workers():
|
459 |
+
"""Launch worker threads"""
|
460 |
global running
|
461 |
running = True
|
462 |
|
|
|
463 |
for _ in range(worker_threads):
|
464 |
worker = threading.Thread(target=queue_processor)
|
465 |
worker.daemon = True
|
466 |
worker.start()
|
467 |
|
468 |
+
# Custom CSS
|
469 |
custom_css = """
|
470 |
.container {
|
471 |
max-width: 1200px;
|
|
|
619 |
}
|
620 |
"""
|
621 |
|
622 |
+
# Initialize and launch worker threads
|
623 |
launch_workers()
|
624 |
|
625 |
+
# Create Gradio interface
|
626 |
with gr.Blocks(css=custom_css) as demo:
|
627 |
+
gr.Markdown("# Code Evaluation Service")
|
628 |
+
gr.Markdown("Code evaluation service supporting multiple programming languages, using queue mechanism to process requests")
|
629 |
|
630 |
with gr.Row():
|
631 |
with gr.Column(scale=3):
|
632 |
+
# Queue status info card
|
633 |
queue_info_html = gr.HTML()
|
634 |
+
refresh_queue_btn = gr.Button("Refresh Queue Status", variant="primary")
|
635 |
|
636 |
+
# Hidden API interface components
|
637 |
with gr.Row(visible=False):
|
638 |
api_input = gr.JSON()
|
639 |
api_output = gr.JSON()
|
640 |
|
641 |
+
# Define update function
|
642 |
def update_queue_info():
|
643 |
return ui_get_queue_info()
|
644 |
|
645 |
+
# Update queue info periodically
|
646 |
demo.load(update_queue_info, None, queue_info_html, every=3)
|
647 |
|
648 |
+
# Refresh button event
|
649 |
refresh_queue_btn.click(update_queue_info, None, queue_info_html)
|
650 |
|
651 |
+
# Add evaluation endpoint compatible with original interface
|
652 |
demo.queue()
|
653 |
evaluate_endpoint = demo.load(fn=synchronous_evaluate, inputs=api_input, outputs=api_output, api_name="evaluate")
|
654 |
|
|
|
656 |
try:
|
657 |
demo.launch()
|
658 |
finally:
|
659 |
+
# Stop worker threads
|
660 |
running = False
|