docker_test / app.py
3v324v23's picture
update51
0985e79
raw
history blame
32.9 kB
import gradio as gr
import json
import importlib
import os
import sys
from pathlib import Path
import concurrent.futures
import multiprocessing
import time
import threading
import queue
import uuid
import numpy as np
from datetime import datetime
from tqdm.auto import tqdm
from src.containerized_eval import eval_string_script
# Add current directory and src directory to module search path
current_dir = os.path.dirname(os.path.abspath(__file__))
src_dir = os.path.join(current_dir, "src")
if current_dir not in sys.path:
sys.path.append(current_dir)
if src_dir not in sys.path:
sys.path.append(src_dir)
# Create message queue
task_queue = queue.Queue()
# Dictionary to store task status
task_status = {}
# List to store task history, max 200 tasks
task_history = []
# Lock for shared resources
lock = threading.Lock()
# Number of worker threads - set to 1 to process one task at a time
worker_threads = 1
# Flag for running background threads
running = True
# Mapping from task type to processing time
task_type_times = {}
# Currently processing tasks counter
processing_count = 0
# Available CPU cores for task processing
available_cores = multiprocessing.cpu_count()
# Task ID counter for debugging
task_counter = 0
# Enable logging
DEBUG_MODE = True
def debug_log(message):
"""Log debug messages if debug mode is enabled"""
if DEBUG_MODE:
print(f"[DEBUG] {datetime.now().strftime('%H:%M:%S')} - {message}")
def queue_processor():
"""Process tasks in the queue"""
global processing_count
while running:
try:
# Only process if we're not already processing a task
with lock:
if processing_count >= worker_threads:
# Already processing a task, wait and try again
time.sleep(0.5)
continue
# Check queue size before attempting to get a task
queue_size = task_queue.qsize()
if queue_size > 0:
debug_log(f"Queue processor found {queue_size} tasks waiting")
else:
# No tasks waiting, sleep briefly to avoid CPU spinning
time.sleep(0.1)
continue
# Get a task from the queue with small timeout to prevent blocking
try:
task_id, input_data, request_time = task_queue.get(timeout=0.1)
debug_log(f"Processing task {task_id}")
except queue.Empty:
continue
# Increment processing count to track active tasks
with lock:
processing_count += 1
debug_log(f"Incremented processing count to {processing_count}")
# Update task status
if task_id in task_status:
task_status[task_id]['status'] = 'processing'
task_status[task_id]['start_time'] = time.time()
debug_log(f"Updated existing task {task_id} to processing state")
else:
# Create task status entry if it doesn't exist
task_status[task_id] = {
'status': 'processing',
'queued_time': request_time,
'start_time': time.time()
}
debug_log(f"Created new task status entry for {task_id}")
if isinstance(input_data, list) and len(input_data) > 0:
sample_task = input_data[0]
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
task_size = len(input_data)
task_complexity = _estimate_task_complexity(input_data)
with lock:
task_status[task_id]['estimated_factors'] = {
'language': language,
'size': task_size,
'complexity': task_complexity
}
debug_log(f"Starting evaluation for task {task_id}")
result = evaluate(input_data)
debug_log(f"Finished evaluation for task {task_id}")
end_time = time.time()
process_time = end_time - task_status[task_id]['start_time']
with lock:
# Decrease processing count now that we're done
processing_count -= 1
debug_log(f"Decremented processing count to {processing_count}")
# Update task status
task_status[task_id]['status'] = 'completed'
task_status[task_id]['result'] = result
task_status[task_id]['end_time'] = end_time
task_status[task_id]['process_time'] = process_time
debug_log(f"Updated task {task_id} to completed state")
if 'estimated_factors' in task_status[task_id]:
factors = task_status[task_id]['estimated_factors']
key = f"{factors['language']}_{factors['complexity']}"
if key not in task_type_times:
task_type_times[key] = []
task_type_times[key].append(process_time / factors['size'])
if len(task_type_times[key]) > 10:
task_type_times[key] = task_type_times[key][-10:]
task_history.append({
'task_id': task_id,
'request_time': request_time,
'process_time': process_time,
'status': 'completed',
'factors': task_status[task_id].get('estimated_factors', {})
})
while len(task_history) > 200:
task_history.pop(0)
task_queue.task_done()
debug_log(f"Task {task_id} completed and marked as done")
except queue.Empty:
# Use a small timeout to avoid CPU spinning
time.sleep(0.1)
except Exception as e:
debug_log(f"Error in queue processor: {str(e)}")
if 'task_id' in locals():
debug_log(f"Error occurred while processing task {task_id}")
with lock:
# Decrease processing count on error
processing_count -= 1
debug_log(f"Decremented processing count to {processing_count} due to error")
if task_id in task_status:
task_status[task_id]['status'] = 'error'
task_status[task_id]['error'] = str(e)
task_status[task_id]['end_time'] = time.time()
debug_log(f"Updated task {task_id} to error state")
else:
task_status[task_id] = {
'status': 'error',
'error': str(e),
'end_time': time.time()
}
debug_log(f"Created new error entry for task {task_id}")
task_queue.task_done()
def _estimate_task_complexity(tasks):
"""Estimate task complexity
Returns: 'simple', 'medium', or 'complex'
"""
total_code_length = 0
count = 0
for task in tasks:
if isinstance(task, dict):
prompt = task.get('prompt', '')
tests = task.get('tests', '')
completions = task.get('processed_completions', [])
code_length = len(prompt) + len(tests)
if completions:
code_length += sum(len(comp) for comp in completions)
total_code_length += code_length
count += 1
if count == 0:
return 'medium'
avg_length = total_code_length / count
if avg_length < 1000:
return 'simple'
elif avg_length < 5000:
return 'medium'
else:
return 'complex'
def evaluate(input_data):
"""Main function for code evaluation"""
try:
if not isinstance(input_data, list):
return {"status": "Exception", "error": "Input must be a list"}
results = []
# Use all available cores for this single task but with a reasonable cap
max_workers = max(1, min(available_cores // 2, 8))
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_item = {executor.submit(evaluate_single_case, item): item for item in input_data}
for future in concurrent.futures.as_completed(future_to_item):
item = future_to_item[future]
try:
result = future.result()
item.update(result)
results.append(item)
except Exception as e:
item.update({"status": "Exception", "error": str(e)})
results.append(item)
return results
except Exception as e:
return {"status": "Exception", "error": str(e)}
def evaluate_single_case(input_data):
"""Evaluate a single code case"""
try:
if not isinstance(input_data, dict):
return {"status": "Exception", "error": "Input item must be a dictionary"}
language = input_data.get('language')
completions = input_data.get('processed_completions', [])
if not completions:
return {"status": "Exception", "error": "No code provided"}
# Use a retry mechanism for all languages for better reliability
max_retries = 2 # One retry for all languages
results = []
for comp in completions:
code = input_data.get('prompt') + comp + '\n' + input_data.get('tests')
# Try up to max_retries + 1 times for all test cases
for attempt in range(max_retries + 1):
result = evaluate_code(code, language)
# If success or last attempt, return/record the result
if result["status"] == "OK" or attempt == max_retries:
if result["status"] == "OK":
return result
results.append(result)
break
# For retries, briefly wait to allow resources to stabilize
time.sleep(0.3)
return results[0]
except Exception as e:
return {"status": "Exception", "error": str(e)}
def evaluate_code(code, language):
"""Evaluate code in a specific language"""
try:
result = eval_string_script(language, code)
return result
except Exception as e:
return {"status": "Exception", "error": str(e)}
def synchronous_evaluate(input_data):
"""Synchronously evaluate code, compatible with original interface"""
debug_log(f"Received synchronous evaluation request")
# Add metadata to identify sync requests
if isinstance(input_data, list) and len(input_data) > 0 and isinstance(input_data[0], dict):
if 'metadata' not in input_data[0]:
input_data[0]['metadata'] = {}
input_data[0]['metadata']['source'] = 'sync_api'
# Create a task and queue it
task_info = enqueue_task(input_data)
task_id = task_info['task_id']
debug_log(f"Created task {task_id} for synchronous evaluation")
# Ensure the task appears in the queue UI, add artificial delay if needed
time.sleep(0.1) # Small delay to make sure the task is visible in queue
# Wait for task to complete
while True:
with lock:
if task_id in task_status:
status = task_status[task_id]['status']
if status == 'completed':
debug_log(f"Task {task_id} completed, returning result")
result = task_status[task_id]['result']
# Keep the result in status for a short time to ensure it shows in history
if 'end_time' not in task_status[task_id]:
task_status[task_id]['end_time'] = time.time()
elif time.time() - task_status[task_id]['end_time'] > 5:
task_status.pop(task_id, None)
return result
elif status == 'error':
debug_log(f"Task {task_id} failed with error")
error = task_status[task_id].get('error', 'Unknown error')
# Keep the error in status for a short time to ensure it shows in history
if 'end_time' not in task_status[task_id]:
task_status[task_id]['end_time'] = time.time()
elif time.time() - task_status[task_id]['end_time'] > 5:
task_status.pop(task_id, None)
return {"status": "Exception", "error": error}
else:
debug_log(f"Task {task_id} still in status: {status}")
time.sleep(0.1)
def _get_estimated_time_for_task(language, complexity):
"""Get estimated processing time for a specific task type"""
key = f"{language}_{complexity}"
if key in task_type_times and len(task_type_times[key]) > 0:
return np.median(task_type_times[key])
if complexity == 'simple':
return 1.0
elif complexity == 'medium':
return 3.0
else: # complex
return 8.0
def enqueue_task(input_data):
"""Add task to queue"""
global task_counter
if isinstance(input_data, list) and len(input_data) > 0:
sample_task = input_data[0]
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
task_size = len(input_data)
task_complexity = _estimate_task_complexity(input_data)
else:
language = 'unknown'
task_size = 1
task_complexity = 'medium'
estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
estimated_total_time = estimated_time_per_task * task_size
# Generate task ID in a thread-safe way
with lock:
task_counter += 1
local_counter = task_counter
task_id = f"task_{local_counter}_{str(uuid.uuid4())[:8]}"
request_time = time.time()
debug_log(f"Creating new task: {task_id}")
# Track if this is a synchronous or asynchronous submission
is_async = 'async_submission' in str(threading.current_thread().name).lower() or 'async' in input_data[0].get('metadata', {}).get('source', '') if isinstance(input_data, list) and input_data and isinstance(input_data[0], dict) and 'metadata' in input_data[0] else False
# Get current queue status before adding to task_status
with lock:
# Count actual queue status - both in queue AND waiting in task_status
current_queue_size = task_queue.qsize()
actual_waiting = sum(1 for t in task_status.values() if t['status'] == 'queued')
total_waiting = actual_waiting # Use the actual count from task_status
debug_log(f"Current queue metrics: queue_size={current_queue_size}, task_status_waiting={actual_waiting}, total={total_waiting}")
queue_position = total_waiting + 1
# Add to task_status with 'queued' status first
task_status[task_id] = {
'status': 'queued',
'queued_time': request_time,
'queue_position': queue_position,
'is_async': is_async,
'estimated_factors': {
'language': language,
'size': task_size,
'complexity': task_complexity
},
'estimated_time': estimated_total_time
}
debug_log(f"Added task {task_id} to task_status with queue position {queue_position}")
# Get queue info for wait time estimation
queue_info = get_queue_status()
est_wait = queue_info['estimated_wait']
debug_log(f"Estimated wait time for task {task_id}: {est_wait} seconds")
# Add to the task queue - this must be done AFTER adding to task_status
task_queue.put((task_id, input_data, request_time))
debug_log(f"Added task {task_id} to task_queue")
# Count queued tasks in task_status after adding
with lock:
queued_count = sum(1 for t in task_status.values() if t['status'] == 'queued')
processing_tasks = sum(1 for t in task_status.values() if t['status'] == 'processing')
debug_log(f"Queue status after adding: {task_queue.qsize()} in queue, {queued_count} with 'queued' status, {processing_tasks} processing")
# Display all task IDs currently in queue
task_ids = [(k, v['status']) for k, v in task_status.items() if v['status'] in ('queued', 'processing')]
if task_ids:
debug_log(f"Current tasks: {task_ids}")
return {
'task_id': task_id,
'status': 'queued',
'queue_position': task_status[task_id]['queue_position'],
'estimated_wait': est_wait,
'estimated_processing': estimated_total_time
}
def check_status(task_id):
"""Check task status"""
with lock:
if task_id not in task_status:
return {'status': 'not_found'}
status_info = task_status[task_id].copy()
if status_info['status'] in ['completed', 'error'] and time.time() - status_info.get('end_time', 0) > 3600:
task_status.pop(task_id, None)
return status_info
def get_queue_status():
"""Get queue status"""
with lock:
queued_tasks = [v for k, v in task_status.items() if v['status'] == 'queued']
processing_tasks = [v for k, v in task_status.items() if v['status'] == 'processing']
queue_size = task_queue.qsize()
active_tasks = processing_count
waiting_tasks = len(queued_tasks)
debug_log(f"Queue status check: size={queue_size}, active={active_tasks}, waiting={waiting_tasks}")
if waiting_tasks != queue_size and abs(waiting_tasks - queue_size) > 1:
debug_log(f"WARNING: Queue size mismatch - task_queue has {queue_size} items but task_status has {waiting_tasks} queued items")
debug_log(f"Queue status details: {len(queued_tasks)} queued tasks found in task_status")
if queued_tasks:
task_ids = [k for k, v in task_status.items() if v['status'] == 'queued']
debug_log(f"Queued task IDs: {task_ids}")
# Calculate remaining processing time for active tasks
remaining_processing_time = 0
for task in processing_tasks:
if 'start_time' in task and 'estimated_time' in task:
elapsed = time.time() - task['start_time']
remaining = max(0, task['estimated_time'] - elapsed)
remaining_processing_time += remaining
else:
remaining_processing_time += 2
if active_tasks > 0:
remaining_processing_time = remaining_processing_time / min(active_tasks, worker_threads)
queued_processing_time = 0
for task in queued_tasks:
if 'estimated_time' in task:
queued_processing_time += task['estimated_time']
else:
queued_processing_time += 5
if worker_threads > 0 and queued_processing_time > 0:
queued_processing_time = queued_processing_time / worker_threads
estimated_wait = remaining_processing_time + queued_processing_time
if task_history:
prediction_ratios = []
for task in task_history:
if 'factors' in task and 'estimated_time' in task:
prediction_ratios.append(task['process_time'] / task['estimated_time'])
if prediction_ratios:
correction_factor = np.median(prediction_ratios)
correction_factor = max(0.5, min(2.0, correction_factor))
estimated_wait *= correction_factor
estimated_wait = max(0.1, estimated_wait)
if waiting_tasks == 0 and active_tasks == 0:
estimated_wait = 0
recent_tasks = task_history[-5:] if task_history else []
return {
'queue_size': queue_size,
'active_tasks': active_tasks,
'waiting_tasks': waiting_tasks,
'worker_threads': worker_threads,
'estimated_wait': estimated_wait,
'recent_tasks': recent_tasks
}
def format_time(seconds):
"""Format time into readable format"""
if seconds < 60:
return f"{seconds:.1f} seconds"
elif seconds < 3600:
minutes = int(seconds / 60)
seconds = seconds % 60
return f"{minutes}m {seconds:.1f}s"
else:
hours = int(seconds / 3600)
minutes = int((seconds % 3600) / 60)
return f"{hours}h {minutes}m"
def ui_get_queue_info():
"""Get queue info for UI"""
queue_info = get_queue_status()
# List queued tasks with details - make sure to use task_id as key
queued_tasks_html = ""
with lock:
queued_tasks = []
for task_id, task in task_status.items():
if task['status'] == 'queued':
task_with_id = task.copy()
task_with_id['task_id'] = task_id
queued_tasks.append(task_with_id)
if queued_tasks:
# Sort by queue position
queued_tasks.sort(key=lambda x: x.get('queue_position', 999999))
queued_tasks_html = "<div class='queued-tasks'><h4>Tasks in Queue:</h4><ul>"
for idx, task in enumerate(queued_tasks):
task_id = task['task_id']
queued_time = datetime.fromtimestamp(task.get('queued_time', 0)).strftime('%H:%M:%S')
source = "async" if task.get('is_async', False) else "sync"
time_in_queue = time.time() - task.get('queued_time', time.time())
queued_tasks_html += f"<li>Task {task_id[:8]}... - Queued at {queued_time} ({time_in_queue:.1f}s ago) - Position {idx+1} ({source})</li>"
queued_tasks_html += "</ul></div>"
tasks_html = ""
for task in reversed(queue_info['recent_tasks']):
tasks_html += f"""
<tr>
<td>{task['task_id'][:8]}...</td>
<td>{datetime.fromtimestamp(task['request_time']).strftime('%H:%M:%S')}</td>
<td>{format_time(task['process_time'])}</td>
</tr>
"""
if not tasks_html:
tasks_html = """
<tr>
<td colspan="3" style="text-align: center; padding: 20px;">No historical tasks</td>
</tr>
"""
# Add more detailed queue information
queue_details = ""
if queue_info['waiting_tasks'] > 0:
queue_details = f"""
<div class="alert alert-info">
<p><strong>Currently {queue_info['waiting_tasks']} tasks in queue</strong></p>
<p>Estimated wait time: {format_time(queue_info['estimated_wait'])}</p>
{queued_tasks_html}
</div>
"""
processing_details = ""
if queue_info['active_tasks'] > 0:
# Display which tasks are being processed
processing_tasks_html = ""
with lock:
processing_task_ids = [k for k, v in task_status.items() if v['status'] == 'processing']
if processing_task_ids:
processing_tasks_html = "<ul>"
for task_id in processing_task_ids:
task = task_status[task_id]
start_time = datetime.fromtimestamp(task.get('start_time', 0)).strftime('%H:%M:%S')
time_processing = time.time() - task.get('start_time', time.time())
processing_tasks_html += f"<li>Task {task_id[:8]}... - Started at {start_time} ({time_processing:.1f}s ago)</li>"
processing_tasks_html += "</ul>"
processing_details = f"""
<div class="alert alert-warning">
<p><strong>Currently {queue_info['active_tasks']} tasks being processed</strong></p>
{processing_tasks_html}
</div>
"""
# Add debug info
debug_details = f"""
<div class="debug-info">
<p><small>Queue: {queue_info['queue_size']} in queue, {queue_info['waiting_tasks']} waiting, {queue_info['active_tasks']} processing</small></p>
</div>
"""
return f"""
<div class="dashboard">
<div class="queue-info-card main-card">
<h3 class="card-title">Queue Status Monitor</h3>
<div class="queue-stats">
<div class="stat-item">
<div class="stat-value">{queue_info['waiting_tasks']}</div>
<div class="stat-label">Waiting</div>
</div>
<div class="stat-item">
<div class="stat-value">{queue_info['active_tasks']}</div>
<div class="stat-label">Processing</div>
</div>
<div class="stat-item">
<div class="stat-value">{queue_info['worker_threads']}</div>
<div class="stat-label">Worker Threads</div>
</div>
</div>
<div class="wait-time">
<p><b>Estimated Wait Time:</b> {format_time(queue_info['estimated_wait'])}</p>
{queue_details}
{processing_details}
{debug_details}
<p class="last-update"><small>Last update: {datetime.now().strftime('%H:%M:%S')}</small></p>
</div>
</div>
<div class="queue-info-card history-card">
<h3 class="card-title">Recently Processed Tasks</h3>
<table class="recent-tasks">
<thead>
<tr>
<th>Task ID</th>
<th>Request Time</th>
<th>Processing Time</th>
</tr>
</thead>
<tbody>
{tasks_html}
</tbody>
</table>
</div>
</div>
"""
def launch_workers():
"""Launch worker threads"""
global running
running = True
for _ in range(worker_threads):
worker = threading.Thread(target=queue_processor)
worker.daemon = True
worker.start()
# Custom CSS
custom_css = """
.container {
max-width: 1200px;
margin: 0 auto;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.dashboard {
display: flex;
flex-direction: column;
gap: 20px;
}
.card-title {
color: #333;
border-bottom: 2px solid #ddd;
padding-bottom: 10px;
margin-top: 0;
}
.status-card, .queue-info-card {
background: #fff;
border-radius: 12px;
padding: 20px;
margin: 10px 0;
box-shadow: 0 4px 15px rgba(0,0,0,0.08);
}
.main-card {
border-top: 5px solid #4285f4;
}
.history-card {
border-top: 5px solid #34a853;
}
.status-card.success {
background: #e7f5e7;
border-left: 5px solid #28a745;
}
.status-card.error {
background: #f8d7da;
border-left: 5px solid #dc3545;
}
.error-message {
color: #dc3545;
font-weight: bold;
padding: 10px;
background: #f8d7da;
border-radius: 5px;
}
.notice {
color: #0c5460;
background-color: #d1ecf1;
padding: 10px;
border-radius: 5px;
}
.queue-stats {
display: flex;
justify-content: space-around;
margin: 20px 0;
}
.stat-item {
text-align: center;
padding: 15px;
background: #f8f9fa;
border-radius: 10px;
min-width: 120px;
transition: transform 0.3s ease;
}
.stat-item:hover {
transform: translateY(-5px);
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
.stat-value {
font-size: 32px;
font-weight: bold;
color: #4285f4;
margin-bottom: 5px;
}
.stat-label {
color: #5f6368;
font-size: 16px;
}
.wait-time {
text-align: center;
margin: 20px 0;
padding: 15px;
background: #f1f3f4;
border-radius: 8px;
font-size: 18px;
}
.last-update {
color: #80868b;
margin-top: 10px;
margin-bottom: 0;
}
.recent-tasks {
width: 100%;
border-collapse: collapse;
margin-top: 15px;
background: white;
box-shadow: 0 1px 3px rgba(0,0,0,0.05);
}
.recent-tasks th, .recent-tasks td {
border: 1px solid #e0e0e0;
padding: 12px 15px;
text-align: center;
}
.recent-tasks th {
background-color: #f1f3f4;
color: #202124;
font-weight: 500;
}
.recent-tasks tbody tr:hover {
background-color: #f8f9fa;
}
.tabs {
margin-top: 20px;
}
button.primary {
background-color: #4285f4;
color: white;
padding: 10px 20px;
border: none;
border-radius: 4px;
cursor: pointer;
font-size: 16px;
font-weight: 500;
transition: background-color 0.3s;
}
button.primary:hover {
background-color: #3367d6;
}
.alert {
padding: 12px;
margin: 10px 0;
border-radius: 6px;
}
.alert-info {
background-color: #d1ecf1;
color: #0c5460;
border: 1px solid #bee5eb;
}
.alert-warning {
background-color: #fff3cd;
color: #856404;
border: 1px solid #ffeeba;
}
.queued-tasks {
text-align: left;
margin: 10px 0;
padding: 8px;
background: rgba(255, 255, 255, 0.5);
border-radius: 4px;
}
.queued-tasks ul {
margin: 5px 0;
padding-left: 20px;
}
.queued-tasks li {
margin-bottom: 3px;
}
"""
def async_enqueue(input_data):
"""Async version of enqueue_task - specifically for async API calls"""
# Add metadata to identify async requests
if isinstance(input_data, list) and len(input_data) > 0 and isinstance(input_data[0], dict):
if 'metadata' not in input_data[0]:
input_data[0]['metadata'] = {}
input_data[0]['metadata']['source'] = 'async_api'
# Just call enqueue_task but set thread name to identify as async
current_thread = threading.current_thread()
original_name = current_thread.name
current_thread.name = f"async_submission_{original_name}"
result = enqueue_task(input_data)
# Reset thread name
current_thread.name = original_name
return result
# Initialize and launch worker threads
launch_workers()
# Create Gradio interface
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("# Code Evaluation Service")
gr.Markdown("Code evaluation service supporting multiple programming languages, using queue mechanism to process requests")
with gr.Row():
with gr.Column(scale=3):
# Queue status info card
queue_info_html = gr.HTML()
refresh_queue_btn = gr.Button("Refresh Queue Status", variant="primary")
# Hidden API interface components
with gr.Row(visible=False):
api_input = gr.JSON()
api_output = gr.JSON()
async_api_input = gr.JSON()
async_api_output = gr.JSON()
status_check_input = gr.Textbox()
status_check_output = gr.JSON()
# Define update function
def update_queue_info():
return ui_get_queue_info()
# Update queue info more frequently
demo.load(update_queue_info, None, queue_info_html, every=0.5)
# Refresh button event
refresh_queue_btn.click(update_queue_info, None, queue_info_html)
# Force sync when handling API requests to prevent gradio's queue from interfering
# Use the correct queue configuration method for current Gradio version
# Add evaluation endpoint compatible with original interface
evaluate_endpoint = demo.load(fn=synchronous_evaluate, inputs=api_input, outputs=api_output, api_name="evaluate", concurrency_limit=1)
# Add async evaluation endpoint
enqueue_endpoint = demo.load(fn=async_enqueue, inputs=async_api_input, outputs=async_api_output, api_name="enqueue", concurrency_limit=1)
# Add status check endpoint
status_endpoint = demo.load(fn=check_status, inputs=status_check_input, outputs=status_check_output, api_name="status", concurrency_limit=1)
if __name__ == "__main__":
debug_log("Starting application")
try:
# Set max_threads for overall concurrency
demo.launch(max_threads=100)
finally:
# Stop worker threads
running = False
debug_log("Shutting down application")