Spaces:
Sleeping
Sleeping
File size: 32,939 Bytes
a27816a 30b1610 4f32597 a27816a de3b744 fc6c268 de3b744 30b1610 8190051 1046fcc de3b744 6517c54 1a7090c de3b744 1046fcc 6f98bd6 6517c54 1a7090c de3b744 1046fcc 6f98bd6 de3b744 6517c54 6f98bd6 6517c54 6f98bd6 1a7090c 0985e79 1a7090c 6f98bd6 0985e79 6f98bd6 1046fcc 6f98bd6 1a7090c 6f98bd6 307f223 1a7090c 307f223 1a7090c de3b744 1046fcc de3b744 1a7090c de3b744 1a7090c de3b744 1046fcc de3b744 1046fcc 6f98bd6 1a7090c 6f98bd6 1046fcc 1a7090c de3b744 1046fcc 254fe03 1046fcc 1a7090c de3b744 0985e79 de3b744 1a7090c de3b744 1a7090c 1046fcc 6f98bd6 1a7090c 6f98bd6 307f223 1a7090c 307f223 1a7090c 1046fcc de3b744 6517c54 de3b744 1a7090c 0985e79 6f98bd6 1a7090c de3b744 0985e79 307f223 de3b744 1046fcc 1a7090c 1046fcc 307f223 1046fcc 1a7090c 1046fcc 307f223 1046fcc 1a7090c de3b744 1046fcc de3b744 1a7090c de3b744 0985e79 de3b744 1a7090c 0985e79 1a7090c 0985e79 1046fcc 0985e79 1046fcc 0985e79 1046fcc 0985e79 254fe03 6f98bd6 1046fcc 254fe03 1a7090c de3b744 6f98bd6 1046fcc 1a7090c 0985e79 1a7090c 0985e79 1046fcc de3b744 1046fcc de3b744 1046fcc de3b744 1046fcc de3b744 1046fcc 0985e79 de3b744 1046fcc 6f98bd6 1046fcc 0985e79 1a7090c 0985e79 1a7090c 0985e79 1046fcc de3b744 1046fcc de3b744 1046fcc 0985e79 1046fcc de3b744 0985e79 1a7090c 0985e79 1a7090c 0985e79 1a7090c 0985e79 1a7090c 0985e79 1a7090c de3b744 1a7090c 6517c54 1a7090c 6517c54 0985e79 1a7090c 0985e79 1a7090c 6517c54 0985e79 de3b744 1a7090c de3b744 1a7090c de3b744 1a7090c de3b744 1a7090c de3b744 1a7090c 6517c54 0985e79 1a7090c de3b744 1a7090c de3b744 1a7090c de3b744 1a7090c de3b744 8190051 0985e79 8190051 edf1ecb 6df6e43 8190051 1a7090c edf1ecb 8c0f360 6df6e43 8c0f360 1a7090c a3558a8 6df6e43 d4652ff 307f223 d4652ff 6df6e43 a3558a8 de3b744 a3558a8 1a7090c 1bac4cd 6df6e43 a3558a8 edf1ecb 1a7090c 700777f 1a7090c 6df6e43 700777f 307f223 0985e79 307f223 700777f a3558a8 1a7090c 890be77 0985e79 a3558a8 6df6e43 1a7090c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 |
import gradio as gr
import json
import importlib
import os
import sys
from pathlib import Path
import concurrent.futures
import multiprocessing
import time
import threading
import queue
import uuid
import numpy as np
from datetime import datetime
from tqdm.auto import tqdm
from src.containerized_eval import eval_string_script
# Add current directory and src directory to module search path
current_dir = os.path.dirname(os.path.abspath(__file__))
src_dir = os.path.join(current_dir, "src")
if current_dir not in sys.path:
sys.path.append(current_dir)
if src_dir not in sys.path:
sys.path.append(src_dir)
# Create message queue
task_queue = queue.Queue()
# Dictionary to store task status
task_status = {}
# List to store task history, max 200 tasks
task_history = []
# Lock for shared resources
lock = threading.Lock()
# Number of worker threads - set to 1 to process one task at a time
worker_threads = 1
# Flag for running background threads
running = True
# Mapping from task type to processing time
task_type_times = {}
# Currently processing tasks counter
processing_count = 0
# Available CPU cores for task processing
available_cores = multiprocessing.cpu_count()
# Task ID counter for debugging
task_counter = 0
# Enable logging
DEBUG_MODE = True
def debug_log(message):
"""Log debug messages if debug mode is enabled"""
if DEBUG_MODE:
print(f"[DEBUG] {datetime.now().strftime('%H:%M:%S')} - {message}")
def queue_processor():
"""Process tasks in the queue"""
global processing_count
while running:
try:
# Only process if we're not already processing a task
with lock:
if processing_count >= worker_threads:
# Already processing a task, wait and try again
time.sleep(0.5)
continue
# Check queue size before attempting to get a task
queue_size = task_queue.qsize()
if queue_size > 0:
debug_log(f"Queue processor found {queue_size} tasks waiting")
else:
# No tasks waiting, sleep briefly to avoid CPU spinning
time.sleep(0.1)
continue
# Get a task from the queue with small timeout to prevent blocking
try:
task_id, input_data, request_time = task_queue.get(timeout=0.1)
debug_log(f"Processing task {task_id}")
except queue.Empty:
continue
# Increment processing count to track active tasks
with lock:
processing_count += 1
debug_log(f"Incremented processing count to {processing_count}")
# Update task status
if task_id in task_status:
task_status[task_id]['status'] = 'processing'
task_status[task_id]['start_time'] = time.time()
debug_log(f"Updated existing task {task_id} to processing state")
else:
# Create task status entry if it doesn't exist
task_status[task_id] = {
'status': 'processing',
'queued_time': request_time,
'start_time': time.time()
}
debug_log(f"Created new task status entry for {task_id}")
if isinstance(input_data, list) and len(input_data) > 0:
sample_task = input_data[0]
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
task_size = len(input_data)
task_complexity = _estimate_task_complexity(input_data)
with lock:
task_status[task_id]['estimated_factors'] = {
'language': language,
'size': task_size,
'complexity': task_complexity
}
debug_log(f"Starting evaluation for task {task_id}")
result = evaluate(input_data)
debug_log(f"Finished evaluation for task {task_id}")
end_time = time.time()
process_time = end_time - task_status[task_id]['start_time']
with lock:
# Decrease processing count now that we're done
processing_count -= 1
debug_log(f"Decremented processing count to {processing_count}")
# Update task status
task_status[task_id]['status'] = 'completed'
task_status[task_id]['result'] = result
task_status[task_id]['end_time'] = end_time
task_status[task_id]['process_time'] = process_time
debug_log(f"Updated task {task_id} to completed state")
if 'estimated_factors' in task_status[task_id]:
factors = task_status[task_id]['estimated_factors']
key = f"{factors['language']}_{factors['complexity']}"
if key not in task_type_times:
task_type_times[key] = []
task_type_times[key].append(process_time / factors['size'])
if len(task_type_times[key]) > 10:
task_type_times[key] = task_type_times[key][-10:]
task_history.append({
'task_id': task_id,
'request_time': request_time,
'process_time': process_time,
'status': 'completed',
'factors': task_status[task_id].get('estimated_factors', {})
})
while len(task_history) > 200:
task_history.pop(0)
task_queue.task_done()
debug_log(f"Task {task_id} completed and marked as done")
except queue.Empty:
# Use a small timeout to avoid CPU spinning
time.sleep(0.1)
except Exception as e:
debug_log(f"Error in queue processor: {str(e)}")
if 'task_id' in locals():
debug_log(f"Error occurred while processing task {task_id}")
with lock:
# Decrease processing count on error
processing_count -= 1
debug_log(f"Decremented processing count to {processing_count} due to error")
if task_id in task_status:
task_status[task_id]['status'] = 'error'
task_status[task_id]['error'] = str(e)
task_status[task_id]['end_time'] = time.time()
debug_log(f"Updated task {task_id} to error state")
else:
task_status[task_id] = {
'status': 'error',
'error': str(e),
'end_time': time.time()
}
debug_log(f"Created new error entry for task {task_id}")
task_queue.task_done()
def _estimate_task_complexity(tasks):
"""Estimate task complexity
Returns: 'simple', 'medium', or 'complex'
"""
total_code_length = 0
count = 0
for task in tasks:
if isinstance(task, dict):
prompt = task.get('prompt', '')
tests = task.get('tests', '')
completions = task.get('processed_completions', [])
code_length = len(prompt) + len(tests)
if completions:
code_length += sum(len(comp) for comp in completions)
total_code_length += code_length
count += 1
if count == 0:
return 'medium'
avg_length = total_code_length / count
if avg_length < 1000:
return 'simple'
elif avg_length < 5000:
return 'medium'
else:
return 'complex'
def evaluate(input_data):
"""Main function for code evaluation"""
try:
if not isinstance(input_data, list):
return {"status": "Exception", "error": "Input must be a list"}
results = []
# Use all available cores for this single task but with a reasonable cap
max_workers = max(1, min(available_cores // 2, 8))
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_item = {executor.submit(evaluate_single_case, item): item for item in input_data}
for future in concurrent.futures.as_completed(future_to_item):
item = future_to_item[future]
try:
result = future.result()
item.update(result)
results.append(item)
except Exception as e:
item.update({"status": "Exception", "error": str(e)})
results.append(item)
return results
except Exception as e:
return {"status": "Exception", "error": str(e)}
def evaluate_single_case(input_data):
"""Evaluate a single code case"""
try:
if not isinstance(input_data, dict):
return {"status": "Exception", "error": "Input item must be a dictionary"}
language = input_data.get('language')
completions = input_data.get('processed_completions', [])
if not completions:
return {"status": "Exception", "error": "No code provided"}
# Use a retry mechanism for all languages for better reliability
max_retries = 2 # One retry for all languages
results = []
for comp in completions:
code = input_data.get('prompt') + comp + '\n' + input_data.get('tests')
# Try up to max_retries + 1 times for all test cases
for attempt in range(max_retries + 1):
result = evaluate_code(code, language)
# If success or last attempt, return/record the result
if result["status"] == "OK" or attempt == max_retries:
if result["status"] == "OK":
return result
results.append(result)
break
# For retries, briefly wait to allow resources to stabilize
time.sleep(0.3)
return results[0]
except Exception as e:
return {"status": "Exception", "error": str(e)}
def evaluate_code(code, language):
"""Evaluate code in a specific language"""
try:
result = eval_string_script(language, code)
return result
except Exception as e:
return {"status": "Exception", "error": str(e)}
def synchronous_evaluate(input_data):
"""Synchronously evaluate code, compatible with original interface"""
debug_log(f"Received synchronous evaluation request")
# Add metadata to identify sync requests
if isinstance(input_data, list) and len(input_data) > 0 and isinstance(input_data[0], dict):
if 'metadata' not in input_data[0]:
input_data[0]['metadata'] = {}
input_data[0]['metadata']['source'] = 'sync_api'
# Create a task and queue it
task_info = enqueue_task(input_data)
task_id = task_info['task_id']
debug_log(f"Created task {task_id} for synchronous evaluation")
# Ensure the task appears in the queue UI, add artificial delay if needed
time.sleep(0.1) # Small delay to make sure the task is visible in queue
# Wait for task to complete
while True:
with lock:
if task_id in task_status:
status = task_status[task_id]['status']
if status == 'completed':
debug_log(f"Task {task_id} completed, returning result")
result = task_status[task_id]['result']
# Keep the result in status for a short time to ensure it shows in history
if 'end_time' not in task_status[task_id]:
task_status[task_id]['end_time'] = time.time()
elif time.time() - task_status[task_id]['end_time'] > 5:
task_status.pop(task_id, None)
return result
elif status == 'error':
debug_log(f"Task {task_id} failed with error")
error = task_status[task_id].get('error', 'Unknown error')
# Keep the error in status for a short time to ensure it shows in history
if 'end_time' not in task_status[task_id]:
task_status[task_id]['end_time'] = time.time()
elif time.time() - task_status[task_id]['end_time'] > 5:
task_status.pop(task_id, None)
return {"status": "Exception", "error": error}
else:
debug_log(f"Task {task_id} still in status: {status}")
time.sleep(0.1)
def _get_estimated_time_for_task(language, complexity):
"""Get estimated processing time for a specific task type"""
key = f"{language}_{complexity}"
if key in task_type_times and len(task_type_times[key]) > 0:
return np.median(task_type_times[key])
if complexity == 'simple':
return 1.0
elif complexity == 'medium':
return 3.0
else: # complex
return 8.0
def enqueue_task(input_data):
"""Add task to queue"""
global task_counter
if isinstance(input_data, list) and len(input_data) > 0:
sample_task = input_data[0]
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
task_size = len(input_data)
task_complexity = _estimate_task_complexity(input_data)
else:
language = 'unknown'
task_size = 1
task_complexity = 'medium'
estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
estimated_total_time = estimated_time_per_task * task_size
# Generate task ID in a thread-safe way
with lock:
task_counter += 1
local_counter = task_counter
task_id = f"task_{local_counter}_{str(uuid.uuid4())[:8]}"
request_time = time.time()
debug_log(f"Creating new task: {task_id}")
# Track if this is a synchronous or asynchronous submission
is_async = 'async_submission' in str(threading.current_thread().name).lower() or 'async' in input_data[0].get('metadata', {}).get('source', '') if isinstance(input_data, list) and input_data and isinstance(input_data[0], dict) and 'metadata' in input_data[0] else False
# Get current queue status before adding to task_status
with lock:
# Count actual queue status - both in queue AND waiting in task_status
current_queue_size = task_queue.qsize()
actual_waiting = sum(1 for t in task_status.values() if t['status'] == 'queued')
total_waiting = actual_waiting # Use the actual count from task_status
debug_log(f"Current queue metrics: queue_size={current_queue_size}, task_status_waiting={actual_waiting}, total={total_waiting}")
queue_position = total_waiting + 1
# Add to task_status with 'queued' status first
task_status[task_id] = {
'status': 'queued',
'queued_time': request_time,
'queue_position': queue_position,
'is_async': is_async,
'estimated_factors': {
'language': language,
'size': task_size,
'complexity': task_complexity
},
'estimated_time': estimated_total_time
}
debug_log(f"Added task {task_id} to task_status with queue position {queue_position}")
# Get queue info for wait time estimation
queue_info = get_queue_status()
est_wait = queue_info['estimated_wait']
debug_log(f"Estimated wait time for task {task_id}: {est_wait} seconds")
# Add to the task queue - this must be done AFTER adding to task_status
task_queue.put((task_id, input_data, request_time))
debug_log(f"Added task {task_id} to task_queue")
# Count queued tasks in task_status after adding
with lock:
queued_count = sum(1 for t in task_status.values() if t['status'] == 'queued')
processing_tasks = sum(1 for t in task_status.values() if t['status'] == 'processing')
debug_log(f"Queue status after adding: {task_queue.qsize()} in queue, {queued_count} with 'queued' status, {processing_tasks} processing")
# Display all task IDs currently in queue
task_ids = [(k, v['status']) for k, v in task_status.items() if v['status'] in ('queued', 'processing')]
if task_ids:
debug_log(f"Current tasks: {task_ids}")
return {
'task_id': task_id,
'status': 'queued',
'queue_position': task_status[task_id]['queue_position'],
'estimated_wait': est_wait,
'estimated_processing': estimated_total_time
}
def check_status(task_id):
"""Check task status"""
with lock:
if task_id not in task_status:
return {'status': 'not_found'}
status_info = task_status[task_id].copy()
if status_info['status'] in ['completed', 'error'] and time.time() - status_info.get('end_time', 0) > 3600:
task_status.pop(task_id, None)
return status_info
def get_queue_status():
"""Get queue status"""
with lock:
queued_tasks = [v for k, v in task_status.items() if v['status'] == 'queued']
processing_tasks = [v for k, v in task_status.items() if v['status'] == 'processing']
queue_size = task_queue.qsize()
active_tasks = processing_count
waiting_tasks = len(queued_tasks)
debug_log(f"Queue status check: size={queue_size}, active={active_tasks}, waiting={waiting_tasks}")
if waiting_tasks != queue_size and abs(waiting_tasks - queue_size) > 1:
debug_log(f"WARNING: Queue size mismatch - task_queue has {queue_size} items but task_status has {waiting_tasks} queued items")
debug_log(f"Queue status details: {len(queued_tasks)} queued tasks found in task_status")
if queued_tasks:
task_ids = [k for k, v in task_status.items() if v['status'] == 'queued']
debug_log(f"Queued task IDs: {task_ids}")
# Calculate remaining processing time for active tasks
remaining_processing_time = 0
for task in processing_tasks:
if 'start_time' in task and 'estimated_time' in task:
elapsed = time.time() - task['start_time']
remaining = max(0, task['estimated_time'] - elapsed)
remaining_processing_time += remaining
else:
remaining_processing_time += 2
if active_tasks > 0:
remaining_processing_time = remaining_processing_time / min(active_tasks, worker_threads)
queued_processing_time = 0
for task in queued_tasks:
if 'estimated_time' in task:
queued_processing_time += task['estimated_time']
else:
queued_processing_time += 5
if worker_threads > 0 and queued_processing_time > 0:
queued_processing_time = queued_processing_time / worker_threads
estimated_wait = remaining_processing_time + queued_processing_time
if task_history:
prediction_ratios = []
for task in task_history:
if 'factors' in task and 'estimated_time' in task:
prediction_ratios.append(task['process_time'] / task['estimated_time'])
if prediction_ratios:
correction_factor = np.median(prediction_ratios)
correction_factor = max(0.5, min(2.0, correction_factor))
estimated_wait *= correction_factor
estimated_wait = max(0.1, estimated_wait)
if waiting_tasks == 0 and active_tasks == 0:
estimated_wait = 0
recent_tasks = task_history[-5:] if task_history else []
return {
'queue_size': queue_size,
'active_tasks': active_tasks,
'waiting_tasks': waiting_tasks,
'worker_threads': worker_threads,
'estimated_wait': estimated_wait,
'recent_tasks': recent_tasks
}
def format_time(seconds):
"""Format time into readable format"""
if seconds < 60:
return f"{seconds:.1f} seconds"
elif seconds < 3600:
minutes = int(seconds / 60)
seconds = seconds % 60
return f"{minutes}m {seconds:.1f}s"
else:
hours = int(seconds / 3600)
minutes = int((seconds % 3600) / 60)
return f"{hours}h {minutes}m"
def ui_get_queue_info():
"""Get queue info for UI"""
queue_info = get_queue_status()
# List queued tasks with details - make sure to use task_id as key
queued_tasks_html = ""
with lock:
queued_tasks = []
for task_id, task in task_status.items():
if task['status'] == 'queued':
task_with_id = task.copy()
task_with_id['task_id'] = task_id
queued_tasks.append(task_with_id)
if queued_tasks:
# Sort by queue position
queued_tasks.sort(key=lambda x: x.get('queue_position', 999999))
queued_tasks_html = "<div class='queued-tasks'><h4>Tasks in Queue:</h4><ul>"
for idx, task in enumerate(queued_tasks):
task_id = task['task_id']
queued_time = datetime.fromtimestamp(task.get('queued_time', 0)).strftime('%H:%M:%S')
source = "async" if task.get('is_async', False) else "sync"
time_in_queue = time.time() - task.get('queued_time', time.time())
queued_tasks_html += f"<li>Task {task_id[:8]}... - Queued at {queued_time} ({time_in_queue:.1f}s ago) - Position {idx+1} ({source})</li>"
queued_tasks_html += "</ul></div>"
tasks_html = ""
for task in reversed(queue_info['recent_tasks']):
tasks_html += f"""
<tr>
<td>{task['task_id'][:8]}...</td>
<td>{datetime.fromtimestamp(task['request_time']).strftime('%H:%M:%S')}</td>
<td>{format_time(task['process_time'])}</td>
</tr>
"""
if not tasks_html:
tasks_html = """
<tr>
<td colspan="3" style="text-align: center; padding: 20px;">No historical tasks</td>
</tr>
"""
# Add more detailed queue information
queue_details = ""
if queue_info['waiting_tasks'] > 0:
queue_details = f"""
<div class="alert alert-info">
<p><strong>Currently {queue_info['waiting_tasks']} tasks in queue</strong></p>
<p>Estimated wait time: {format_time(queue_info['estimated_wait'])}</p>
{queued_tasks_html}
</div>
"""
processing_details = ""
if queue_info['active_tasks'] > 0:
# Display which tasks are being processed
processing_tasks_html = ""
with lock:
processing_task_ids = [k for k, v in task_status.items() if v['status'] == 'processing']
if processing_task_ids:
processing_tasks_html = "<ul>"
for task_id in processing_task_ids:
task = task_status[task_id]
start_time = datetime.fromtimestamp(task.get('start_time', 0)).strftime('%H:%M:%S')
time_processing = time.time() - task.get('start_time', time.time())
processing_tasks_html += f"<li>Task {task_id[:8]}... - Started at {start_time} ({time_processing:.1f}s ago)</li>"
processing_tasks_html += "</ul>"
processing_details = f"""
<div class="alert alert-warning">
<p><strong>Currently {queue_info['active_tasks']} tasks being processed</strong></p>
{processing_tasks_html}
</div>
"""
# Add debug info
debug_details = f"""
<div class="debug-info">
<p><small>Queue: {queue_info['queue_size']} in queue, {queue_info['waiting_tasks']} waiting, {queue_info['active_tasks']} processing</small></p>
</div>
"""
return f"""
<div class="dashboard">
<div class="queue-info-card main-card">
<h3 class="card-title">Queue Status Monitor</h3>
<div class="queue-stats">
<div class="stat-item">
<div class="stat-value">{queue_info['waiting_tasks']}</div>
<div class="stat-label">Waiting</div>
</div>
<div class="stat-item">
<div class="stat-value">{queue_info['active_tasks']}</div>
<div class="stat-label">Processing</div>
</div>
<div class="stat-item">
<div class="stat-value">{queue_info['worker_threads']}</div>
<div class="stat-label">Worker Threads</div>
</div>
</div>
<div class="wait-time">
<p><b>Estimated Wait Time:</b> {format_time(queue_info['estimated_wait'])}</p>
{queue_details}
{processing_details}
{debug_details}
<p class="last-update"><small>Last update: {datetime.now().strftime('%H:%M:%S')}</small></p>
</div>
</div>
<div class="queue-info-card history-card">
<h3 class="card-title">Recently Processed Tasks</h3>
<table class="recent-tasks">
<thead>
<tr>
<th>Task ID</th>
<th>Request Time</th>
<th>Processing Time</th>
</tr>
</thead>
<tbody>
{tasks_html}
</tbody>
</table>
</div>
</div>
"""
def launch_workers():
"""Launch worker threads"""
global running
running = True
for _ in range(worker_threads):
worker = threading.Thread(target=queue_processor)
worker.daemon = True
worker.start()
# Custom CSS
custom_css = """
.container {
max-width: 1200px;
margin: 0 auto;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.dashboard {
display: flex;
flex-direction: column;
gap: 20px;
}
.card-title {
color: #333;
border-bottom: 2px solid #ddd;
padding-bottom: 10px;
margin-top: 0;
}
.status-card, .queue-info-card {
background: #fff;
border-radius: 12px;
padding: 20px;
margin: 10px 0;
box-shadow: 0 4px 15px rgba(0,0,0,0.08);
}
.main-card {
border-top: 5px solid #4285f4;
}
.history-card {
border-top: 5px solid #34a853;
}
.status-card.success {
background: #e7f5e7;
border-left: 5px solid #28a745;
}
.status-card.error {
background: #f8d7da;
border-left: 5px solid #dc3545;
}
.error-message {
color: #dc3545;
font-weight: bold;
padding: 10px;
background: #f8d7da;
border-radius: 5px;
}
.notice {
color: #0c5460;
background-color: #d1ecf1;
padding: 10px;
border-radius: 5px;
}
.queue-stats {
display: flex;
justify-content: space-around;
margin: 20px 0;
}
.stat-item {
text-align: center;
padding: 15px;
background: #f8f9fa;
border-radius: 10px;
min-width: 120px;
transition: transform 0.3s ease;
}
.stat-item:hover {
transform: translateY(-5px);
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
.stat-value {
font-size: 32px;
font-weight: bold;
color: #4285f4;
margin-bottom: 5px;
}
.stat-label {
color: #5f6368;
font-size: 16px;
}
.wait-time {
text-align: center;
margin: 20px 0;
padding: 15px;
background: #f1f3f4;
border-radius: 8px;
font-size: 18px;
}
.last-update {
color: #80868b;
margin-top: 10px;
margin-bottom: 0;
}
.recent-tasks {
width: 100%;
border-collapse: collapse;
margin-top: 15px;
background: white;
box-shadow: 0 1px 3px rgba(0,0,0,0.05);
}
.recent-tasks th, .recent-tasks td {
border: 1px solid #e0e0e0;
padding: 12px 15px;
text-align: center;
}
.recent-tasks th {
background-color: #f1f3f4;
color: #202124;
font-weight: 500;
}
.recent-tasks tbody tr:hover {
background-color: #f8f9fa;
}
.tabs {
margin-top: 20px;
}
button.primary {
background-color: #4285f4;
color: white;
padding: 10px 20px;
border: none;
border-radius: 4px;
cursor: pointer;
font-size: 16px;
font-weight: 500;
transition: background-color 0.3s;
}
button.primary:hover {
background-color: #3367d6;
}
.alert {
padding: 12px;
margin: 10px 0;
border-radius: 6px;
}
.alert-info {
background-color: #d1ecf1;
color: #0c5460;
border: 1px solid #bee5eb;
}
.alert-warning {
background-color: #fff3cd;
color: #856404;
border: 1px solid #ffeeba;
}
.queued-tasks {
text-align: left;
margin: 10px 0;
padding: 8px;
background: rgba(255, 255, 255, 0.5);
border-radius: 4px;
}
.queued-tasks ul {
margin: 5px 0;
padding-left: 20px;
}
.queued-tasks li {
margin-bottom: 3px;
}
"""
def async_enqueue(input_data):
"""Async version of enqueue_task - specifically for async API calls"""
# Add metadata to identify async requests
if isinstance(input_data, list) and len(input_data) > 0 and isinstance(input_data[0], dict):
if 'metadata' not in input_data[0]:
input_data[0]['metadata'] = {}
input_data[0]['metadata']['source'] = 'async_api'
# Just call enqueue_task but set thread name to identify as async
current_thread = threading.current_thread()
original_name = current_thread.name
current_thread.name = f"async_submission_{original_name}"
result = enqueue_task(input_data)
# Reset thread name
current_thread.name = original_name
return result
# Initialize and launch worker threads
launch_workers()
# Create Gradio interface
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("# Code Evaluation Service")
gr.Markdown("Code evaluation service supporting multiple programming languages, using queue mechanism to process requests")
with gr.Row():
with gr.Column(scale=3):
# Queue status info card
queue_info_html = gr.HTML()
refresh_queue_btn = gr.Button("Refresh Queue Status", variant="primary")
# Hidden API interface components
with gr.Row(visible=False):
api_input = gr.JSON()
api_output = gr.JSON()
async_api_input = gr.JSON()
async_api_output = gr.JSON()
status_check_input = gr.Textbox()
status_check_output = gr.JSON()
# Define update function
def update_queue_info():
return ui_get_queue_info()
# Update queue info more frequently
demo.load(update_queue_info, None, queue_info_html, every=0.5)
# Refresh button event
refresh_queue_btn.click(update_queue_info, None, queue_info_html)
# Force sync when handling API requests to prevent gradio's queue from interfering
# Use the correct queue configuration method for current Gradio version
# Add evaluation endpoint compatible with original interface
evaluate_endpoint = demo.load(fn=synchronous_evaluate, inputs=api_input, outputs=api_output, api_name="evaluate", concurrency_limit=1)
# Add async evaluation endpoint
enqueue_endpoint = demo.load(fn=async_enqueue, inputs=async_api_input, outputs=async_api_output, api_name="enqueue", concurrency_limit=1)
# Add status check endpoint
status_endpoint = demo.load(fn=check_status, inputs=status_check_input, outputs=status_check_output, api_name="status", concurrency_limit=1)
if __name__ == "__main__":
debug_log("Starting application")
try:
# Set max_threads for overall concurrency
demo.launch(max_threads=100)
finally:
# Stop worker threads
running = False
debug_log("Shutting down application") |