Spaces:
Running
on
Zero
Running
on
Zero
comment out video save -
Browse files
app.py
CHANGED
@@ -1,102 +1,4 @@
|
|
1 |
-
#
|
2 |
-
# Changes:
|
3 |
-
# - Modified `text_to_3d` to explicitly return the serializable `state_dict` from `pack_state`
|
4 |
-
# as the first return value. This ensures the dictionary is available via the API.
|
5 |
-
# - Modified `extract_glb` to accept `state_dict: dict` as its first argument instead of
|
6 |
-
# relying on the implicit `gr.State` object type when called via API.
|
7 |
-
# - Kept Gradio UI bindings (`outputs=[output_buf, ...]`, `inputs=[output_buf, ...]`)
|
8 |
-
# so the UI continues to function by passing the dictionary through output_buf.
|
9 |
-
|
10 |
-
import gradio as gr
|
11 |
-
import spaces
|
12 |
-
|
13 |
-
import os
|
14 |
-
import shutil
|
15 |
-
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
16 |
-
os.environ['SPCONV_ALGO'] = 'native'
|
17 |
-
from typing import *
|
18 |
-
import torch
|
19 |
-
import numpy as np
|
20 |
-
import imageio
|
21 |
-
from easydict import EasyDict as edict
|
22 |
-
from trellis.pipelines import TrellisTextTo3DPipeline
|
23 |
-
from trellis.representations import Gaussian, MeshExtractResult
|
24 |
-
from trellis.utils import render_utils, postprocessing_utils
|
25 |
-
|
26 |
-
import traceback
|
27 |
-
import sys
|
28 |
-
|
29 |
-
|
30 |
-
MAX_SEED = np.iinfo(np.int32).max
|
31 |
-
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
32 |
-
os.makedirs(TMP_DIR, exist_ok=True)
|
33 |
-
|
34 |
-
|
35 |
-
def start_session(req: gr.Request):
|
36 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
37 |
-
os.makedirs(user_dir, exist_ok=True)
|
38 |
-
|
39 |
-
|
40 |
-
def end_session(req: gr.Request):
|
41 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
42 |
-
# Add safety check before removing
|
43 |
-
if os.path.exists(user_dir):
|
44 |
-
try:
|
45 |
-
shutil.rmtree(user_dir)
|
46 |
-
except OSError as e:
|
47 |
-
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
|
48 |
-
|
49 |
-
|
50 |
-
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
51 |
-
# Ensure tensors are on CPU and converted to numpy before returning the dict
|
52 |
-
return {
|
53 |
-
'gaussian': {
|
54 |
-
**gs.init_params,
|
55 |
-
'_xyz': gs._xyz.detach().cpu().numpy(),
|
56 |
-
'_features_dc': gs._features_dc.detach().cpu().numpy(),
|
57 |
-
'_scaling': gs._scaling.detach().cpu().numpy(),
|
58 |
-
'_rotation': gs._rotation.detach().cpu().numpy(),
|
59 |
-
'_opacity': gs._opacity.detach().cpu().numpy(),
|
60 |
-
},
|
61 |
-
'mesh': {
|
62 |
-
'vertices': mesh.vertices.detach().cpu().numpy(),
|
63 |
-
'faces': mesh.faces.detach().cpu().numpy(),
|
64 |
-
},
|
65 |
-
}
|
66 |
-
|
67 |
-
|
68 |
-
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
69 |
-
# Ensure the device is correctly set when unpacking
|
70 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
71 |
-
|
72 |
-
gs = Gaussian(
|
73 |
-
aabb=state_dict['gaussian']['aabb'],
|
74 |
-
sh_degree=state_dict['gaussian']['sh_degree'],
|
75 |
-
mininum_kernel_size=state_dict['gaussian']['mininum_kernel_size'],
|
76 |
-
scaling_bias=state_dict['gaussian']['scaling_bias'],
|
77 |
-
opacity_bias=state_dict['gaussian']['opacity_bias'],
|
78 |
-
scaling_activation=state_dict['gaussian']['scaling_activation'],
|
79 |
-
)
|
80 |
-
gs._xyz = torch.tensor(state_dict['gaussian']['_xyz'], device=device)
|
81 |
-
gs._features_dc = torch.tensor(state_dict['gaussian']['_features_dc'], device=device)
|
82 |
-
gs._scaling = torch.tensor(state_dict['gaussian']['_scaling'], device=device)
|
83 |
-
gs._rotation = torch.tensor(state_dict['gaussian']['_rotation'], device=device)
|
84 |
-
gs._opacity = torch.tensor(state_dict['gaussian']['_opacity'], device=device)
|
85 |
-
|
86 |
-
mesh = edict(
|
87 |
-
vertices=torch.tensor(state_dict['mesh']['vertices'], device=device),
|
88 |
-
faces=torch.tensor(state_dict['mesh']['faces'], device=device),
|
89 |
-
)
|
90 |
-
|
91 |
-
return gs, mesh
|
92 |
-
|
93 |
-
|
94 |
-
def get_seed(randomize_seed: bool, seed: int) -> int:
|
95 |
-
"""
|
96 |
-
Get the random seed.
|
97 |
-
"""
|
98 |
-
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
99 |
-
|
100 |
|
101 |
@spaces.GPU
|
102 |
def text_to_3d(
|
@@ -107,230 +9,79 @@ def text_to_3d(
|
|
107 |
slat_guidance_strength: float,
|
108 |
slat_sampling_steps: int,
|
109 |
req: gr.Request,
|
110 |
-
) -> Tuple[dict, str]: #
|
111 |
"""
|
112 |
-
|
113 |
-
|
114 |
-
prompt (str): The text prompt.
|
115 |
-
seed (int): The random seed.
|
116 |
-
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
117 |
-
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
118 |
-
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
119 |
-
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
120 |
-
Returns:
|
121 |
-
dict: The *serializable dictionary* representing the state of the generated 3D model. <-- CHANGE
|
122 |
-
str: The path to the video preview of the 3D model.
|
123 |
"""
|
|
|
124 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
125 |
os.makedirs(user_dir, exist_ok=True)
|
|
|
126 |
|
127 |
# --- Generation Pipeline ---
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
"
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
149 |
-
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
150 |
-
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
151 |
-
video_path = os.path.join(user_dir, 'sample.mp4')
|
152 |
-
imageio.mimsave(video_path, video, fps=15)
|
153 |
-
|
154 |
-
torch.cuda.empty_cache()
|
155 |
-
|
156 |
-
# --- Return Serializable Dictionary and Video Path --- VITAL CHANGE for API
|
157 |
-
return state_dict, video_path
|
158 |
-
|
159 |
-
|
160 |
-
@spaces.GPU(duration=90)
|
161 |
-
def extract_glb(
|
162 |
-
state_dict: dict, # <-- VITAL CHANGE: Accept the dictionary directly
|
163 |
-
mesh_simplify: float,
|
164 |
-
texture_size: int,
|
165 |
-
req: gr.Request,
|
166 |
-
) -> Tuple[str, str]:
|
167 |
-
"""
|
168 |
-
Extract a GLB file from the 3D model state dictionary.
|
169 |
-
Args:
|
170 |
-
state_dict (dict): The serializable dictionary state of the generated 3D model. <-- CHANGE
|
171 |
-
mesh_simplify (float): The mesh simplification factor.
|
172 |
-
texture_size (int): The texture resolution.
|
173 |
-
Returns:
|
174 |
-
str: The path to the extracted GLB file (for Model3D component).
|
175 |
-
str: The path to the extracted GLB file (for DownloadButton).
|
176 |
-
"""
|
177 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
178 |
-
os.makedirs(user_dir, exist_ok=True)
|
179 |
-
|
180 |
-
# --- Unpack state from the dictionary --- VITAL CHANGE for API
|
181 |
-
gs, mesh = unpack_state(state_dict)
|
182 |
-
|
183 |
-
# --- Postprocessing and Export ---
|
184 |
-
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
185 |
-
glb_path = os.path.join(user_dir, 'sample.glb')
|
186 |
-
glb.export(glb_path)
|
187 |
-
|
188 |
-
torch.cuda.empty_cache()
|
189 |
-
# Return path twice for both Model3D and DownloadButton components
|
190 |
-
return glb_path, glb_path
|
191 |
-
|
192 |
-
|
193 |
-
@spaces.GPU
|
194 |
-
def extract_gaussian(state_dict: dict, req: gr.Request) -> Tuple[str, str]: # <-- CHANGE: Accept dict
|
195 |
-
"""
|
196 |
-
Extract a Gaussian file from the 3D model state dictionary.
|
197 |
-
Args:
|
198 |
-
state_dict (dict): The serializable dictionary state of the generated 3D model. <-- CHANGE
|
199 |
-
Returns:
|
200 |
-
str: The path to the extracted Gaussian file (for Model3D component).
|
201 |
-
str: The path to the extracted Gaussian file (for DownloadButton).
|
202 |
-
"""
|
203 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
204 |
-
os.makedirs(user_dir, exist_ok=True)
|
205 |
-
|
206 |
-
# --- Unpack state from the dictionary --- VITAL CHANGE for API
|
207 |
-
gs, _ = unpack_state(state_dict)
|
208 |
-
|
209 |
-
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
210 |
-
gs.save_ply(gaussian_path)
|
211 |
-
torch.cuda.empty_cache()
|
212 |
-
# Return path twice for both Model3D and DownloadButton components
|
213 |
-
return gaussian_path, gaussian_path
|
214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
# --- Gradio UI Definition ---
|
217 |
-
#
|
218 |
-
# video_output = gr.Video(...) # No change needed
|
219 |
-
|
220 |
-
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
221 |
-
gr.Markdown("""
|
222 |
-
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
223 |
-
* Type a text prompt and click "Generate" to create a 3D asset.
|
224 |
-
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
225 |
-
""")
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
with gr.Accordion(label="Generation Settings", open=False):
|
232 |
-
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
233 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
234 |
-
gr.Markdown("Stage 1: Sparse Structure Generation")
|
235 |
-
with gr.Row():
|
236 |
-
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
237 |
-
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
|
238 |
-
gr.Markdown("Stage 2: Structured Latent Generation")
|
239 |
-
with gr.Row():
|
240 |
-
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
241 |
-
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
|
242 |
-
|
243 |
-
generate_btn = gr.Button("Generate")
|
244 |
-
|
245 |
-
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
246 |
-
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
247 |
-
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
248 |
-
|
249 |
-
with gr.Row():
|
250 |
-
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
251 |
-
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
252 |
-
gr.Markdown("""
|
253 |
-
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
254 |
-
""")
|
255 |
-
|
256 |
-
with gr.Column():
|
257 |
-
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
258 |
-
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
|
259 |
-
|
260 |
-
with gr.Row():
|
261 |
-
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
262 |
-
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
263 |
-
|
264 |
-
# --- State Buffer ---
|
265 |
-
# This will now hold the dictionary returned by text_to_3d
|
266 |
-
output_buf = gr.State()
|
267 |
-
|
268 |
-
# --- Handlers ---
|
269 |
-
demo.load(start_session)
|
270 |
-
demo.unload(end_session)
|
271 |
-
|
272 |
-
# --- Generate Button Click Flow ---
|
273 |
-
# No changes needed to the structure, but text_to_3d now puts the dictionary into output_buf
|
274 |
-
generate_btn.click(
|
275 |
-
get_seed,
|
276 |
-
inputs=[randomize_seed, seed],
|
277 |
-
outputs=[seed],
|
278 |
-
).then(
|
279 |
-
text_to_3d,
|
280 |
-
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
281 |
-
outputs=[output_buf, video_output], # output_buf receives state_dict
|
282 |
-
).then(
|
283 |
-
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
284 |
-
outputs=[extract_glb_btn, extract_gs_btn],
|
285 |
-
)
|
286 |
-
|
287 |
-
video_output.clear(
|
288 |
-
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
289 |
-
outputs=[extract_glb_btn, extract_gs_btn],
|
290 |
-
)
|
291 |
-
|
292 |
-
# --- Extract GLB Button Click Flow ---
|
293 |
-
# The input 'output_buf' now contains the state_dict needed by the modified extract_glb function
|
294 |
-
extract_glb_btn.click(
|
295 |
-
extract_glb,
|
296 |
-
inputs=[output_buf, mesh_simplify, texture_size], # Pass the state_dict via output_buf
|
297 |
-
outputs=[model_output, download_glb],
|
298 |
-
).then(
|
299 |
-
lambda: gr.Button(interactive=True),
|
300 |
-
outputs=[download_glb],
|
301 |
-
)
|
302 |
-
|
303 |
-
# --- Extract Gaussian Button Click Flow ---
|
304 |
-
# The input 'output_buf' now contains the state_dict needed by the modified extract_gaussian function
|
305 |
-
extract_gs_btn.click(
|
306 |
-
extract_gaussian,
|
307 |
-
inputs=[output_buf], # Pass the state_dict via output_buf
|
308 |
-
outputs=[model_output, download_gs],
|
309 |
-
).then(
|
310 |
-
lambda: gr.Button(interactive=True),
|
311 |
-
outputs=[download_gs],
|
312 |
-
)
|
313 |
-
|
314 |
-
model_output.clear(
|
315 |
-
lambda: gr.Button(interactive=False), # Should clear both potentially?
|
316 |
-
outputs=[download_glb, download_gs], # Clear both download buttons
|
317 |
-
)
|
318 |
-
|
319 |
-
|
320 |
-
# --- Launch the Gradio app ---
|
321 |
-
if __name__ == "__main__":
|
322 |
-
# Consider adding error handling for pipeline loading
|
323 |
-
try:
|
324 |
-
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
|
325 |
-
# Move to GPU if available
|
326 |
-
if torch.cuda.is_available():
|
327 |
-
pipeline.cuda()
|
328 |
-
else:
|
329 |
-
print("WARNING: CUDA not available, running on CPU (will be very slow).")
|
330 |
-
print("✅ Trellis pipeline loaded successfully.")
|
331 |
-
except Exception as e:
|
332 |
-
print(f"❌ Failed to load Trellis pipeline: {e}", file=sys.stderr)
|
333 |
-
# Optionally exit if pipeline is critical
|
334 |
-
# sys.exit(1)
|
335 |
|
336 |
-
|
|
|
|
1 |
+
# In appTrellis_fileErrorsFIx.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
@spaces.GPU
|
4 |
def text_to_3d(
|
|
|
9 |
slat_guidance_strength: float,
|
10 |
slat_sampling_steps: int,
|
11 |
req: gr.Request,
|
12 |
+
) -> Tuple[dict, str]: # Return type changed for clarity
|
13 |
"""
|
14 |
+
Generates a 3D model (Gaussian and Mesh) from text and returns a
|
15 |
+
serializable state dictionary and a video preview path.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
"""
|
17 |
+
print(f"[text_to_3d] Received prompt: '{prompt}', Seed: {seed}")
|
18 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
19 |
os.makedirs(user_dir, exist_ok=True)
|
20 |
+
print(f"[text_to_3d] User directory: {user_dir}")
|
21 |
|
22 |
# --- Generation Pipeline ---
|
23 |
+
try:
|
24 |
+
print("[text_to_3d] Running Trellis pipeline...")
|
25 |
+
outputs = pipeline.run(
|
26 |
+
prompt,
|
27 |
+
seed=seed,
|
28 |
+
formats=["gaussian", "mesh"], # Ensure both are generated
|
29 |
+
sparse_structure_sampler_params={
|
30 |
+
"steps": int(ss_sampling_steps), # Ensure steps are int
|
31 |
+
"cfg_strength": float(ss_guidance_strength),
|
32 |
+
},
|
33 |
+
slat_sampler_params={
|
34 |
+
"steps": int(slat_sampling_steps), # Ensure steps are int
|
35 |
+
"cfg_strength": float(slat_guidance_strength),
|
36 |
+
},
|
37 |
+
)
|
38 |
+
print("[text_to_3d] Pipeline run completed.")
|
39 |
+
except Exception as e:
|
40 |
+
print(f"❌ [text_to_3d] Pipeline error: {e}", file=sys.stderr)
|
41 |
+
traceback.print_exc()
|
42 |
+
raise gr.Error(f"Trellis pipeline failed: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# --- Create Serializable State Dictionary ---
|
45 |
+
try:
|
46 |
+
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
47 |
+
except Exception as e:
|
48 |
+
print(f"❌ [text_to_3d] pack_state error: {e}", file=sys.stderr)
|
49 |
+
traceback.print_exc()
|
50 |
+
raise gr.Error(f"Failed to pack state: {e}")
|
51 |
+
|
52 |
+
# --- Render Video Preview (TEMPORARILY DISABLED FOR DEBUGGING) ---
|
53 |
+
video_path = None # Set path to None
|
54 |
+
# try:
|
55 |
+
# print("[text_to_3d] Rendering video preview...")
|
56 |
+
# video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
57 |
+
# video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
58 |
+
# # Ensure video frames are uint8
|
59 |
+
# video = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)]
|
60 |
+
# video_path = os.path.join(user_dir, 'sample.mp4')
|
61 |
+
# imageio.mimsave(video_path, video, fps=15, quality=8) # Added quality setting
|
62 |
+
# print(f"[text_to_3d] Video saved to: {video_path}")
|
63 |
+
# except Exception as e:
|
64 |
+
# print(f"❌ [text_to_3d] Video rendering/saving error: {e}", file=sys.stderr)
|
65 |
+
# traceback.print_exc()
|
66 |
+
# # Still return state_dict, but maybe signal video error? Return None for path.
|
67 |
+
# video_path = None # Indicate video failure
|
68 |
+
print("[text_to_3d] Skipping video rendering for debugging.")
|
69 |
+
|
70 |
+
# --- Cleanup and Return ---
|
71 |
+
if torch.cuda.is_available():
|
72 |
+
torch.cuda.empty_cache()
|
73 |
+
print("[text_to_3d] Cleared CUDA cache.")
|
74 |
+
|
75 |
+
# --- Return Serializable Dictionary and None for Video Path ---
|
76 |
+
print("[text_to_3d] Returning state dictionary and None video path.")
|
77 |
+
return state_dict, video_path # Return dict and None video path
|
78 |
|
79 |
# --- Gradio UI Definition ---
|
80 |
+
# ... (rest of the file is the same, but you might want to adjust the output mapping if needed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
# In the generate_btn.click handler, adjust the outputs if the video component causes issues:
|
83 |
+
# Option 1: Keep Video component, it will just show nothing.
|
84 |
+
# outputs=[output_buf, video_output], # This might be fine
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
# Option 2: Use a dummy hidden component if video_output causes issues receiving None
|
87 |
+
# outputs=[output_buf, gr.Textbox(visible=False)], # Example dummy
|