Spaces:
Running
on
Zero
Running
on
Zero
Modified `text_to_3d` to explicitly return the serializable `state_dict` from `pack_state` # as the first return value. This ensures the dictionary is available via the API. # - Modified `extract_glb` to accept `state_dict: dict` as its first argument instead of # relying on the implicit `gr.State` object type when called via API. # - Kept Gradio UI bindings (`outputs=[output_buf, ...]`, `inputs=[output_buf, ...]`) # so the UI continues to function by passing the dictionary through output_buf.
Browse files
app.py
CHANGED
@@ -1,3 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
|
@@ -26,50 +35,59 @@ os.makedirs(TMP_DIR, exist_ok=True)
|
|
26 |
def start_session(req: gr.Request):
|
27 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
28 |
os.makedirs(user_dir, exist_ok=True)
|
29 |
-
|
30 |
-
|
31 |
def end_session(req: gr.Request):
|
32 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
|
37 |
return {
|
38 |
'gaussian': {
|
39 |
**gs.init_params,
|
40 |
-
'_xyz': gs._xyz.cpu().numpy(),
|
41 |
-
'_features_dc': gs._features_dc.cpu().numpy(),
|
42 |
-
'_scaling': gs._scaling.cpu().numpy(),
|
43 |
-
'_rotation': gs._rotation.cpu().numpy(),
|
44 |
-
'_opacity': gs._opacity.cpu().numpy(),
|
45 |
},
|
46 |
'mesh': {
|
47 |
-
'vertices': mesh.vertices.cpu().numpy(),
|
48 |
-
'faces': mesh.faces.cpu().numpy(),
|
49 |
},
|
50 |
}
|
51 |
-
|
52 |
-
|
53 |
-
def unpack_state(
|
|
|
|
|
|
|
54 |
gs = Gaussian(
|
55 |
-
aabb=
|
56 |
-
sh_degree=
|
57 |
-
mininum_kernel_size=
|
58 |
-
scaling_bias=
|
59 |
-
opacity_bias=
|
60 |
-
scaling_activation=
|
61 |
)
|
62 |
-
gs._xyz = torch.tensor(
|
63 |
-
gs._features_dc = torch.tensor(
|
64 |
-
gs._scaling = torch.tensor(
|
65 |
-
gs._rotation = torch.tensor(
|
66 |
-
gs._opacity = torch.tensor(
|
67 |
-
|
68 |
mesh = edict(
|
69 |
-
vertices=torch.tensor(
|
70 |
-
faces=torch.tensor(
|
71 |
)
|
72 |
-
|
73 |
return gs, mesh
|
74 |
|
75 |
|
@@ -89,7 +107,7 @@ def text_to_3d(
|
|
89 |
slat_guidance_strength: float,
|
90 |
slat_sampling_steps: int,
|
91 |
req: gr.Request,
|
92 |
-
) -> Tuple[dict, str]:
|
93 |
"""
|
94 |
Convert an text prompt to a 3D model.
|
95 |
Args:
|
@@ -100,15 +118,17 @@ def text_to_3d(
|
|
100 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
101 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
102 |
Returns:
|
103 |
-
dict: The
|
104 |
-
str: The path to the video of the 3D model.
|
105 |
"""
|
106 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
107 |
os.makedirs(user_dir, exist_ok=True)
|
|
|
|
|
108 |
outputs = pipeline.run(
|
109 |
prompt,
|
110 |
seed=seed,
|
111 |
-
formats=["gaussian", "mesh"],
|
112 |
sparse_structure_sampler_params={
|
113 |
"steps": ss_sampling_steps,
|
114 |
"cfg_strength": ss_guidance_strength,
|
@@ -118,62 +138,84 @@ def text_to_3d(
|
|
118 |
"cfg_strength": slat_guidance_strength,
|
119 |
},
|
120 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
122 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
123 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
124 |
video_path = os.path.join(user_dir, 'sample.mp4')
|
125 |
imageio.mimsave(video_path, video, fps=15)
|
126 |
-
|
127 |
torch.cuda.empty_cache()
|
128 |
-
|
|
|
|
|
129 |
|
130 |
|
131 |
@spaces.GPU(duration=90)
|
132 |
def extract_glb(
|
133 |
-
|
134 |
mesh_simplify: float,
|
135 |
texture_size: int,
|
136 |
req: gr.Request,
|
137 |
) -> Tuple[str, str]:
|
138 |
"""
|
139 |
-
Extract a GLB file from the 3D model.
|
140 |
Args:
|
141 |
-
|
142 |
mesh_simplify (float): The mesh simplification factor.
|
143 |
texture_size (int): The texture resolution.
|
144 |
Returns:
|
145 |
-
str: The path to the extracted GLB file.
|
|
|
146 |
"""
|
147 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
148 |
os.makedirs(user_dir, exist_ok=True)
|
149 |
-
|
|
|
|
|
|
|
|
|
150 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
151 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
152 |
glb.export(glb_path)
|
|
|
153 |
torch.cuda.empty_cache()
|
|
|
154 |
return glb_path, glb_path
|
155 |
|
156 |
|
157 |
@spaces.GPU
|
158 |
-
def extract_gaussian(
|
159 |
"""
|
160 |
-
Extract a Gaussian file from the 3D model.
|
161 |
Args:
|
162 |
-
|
163 |
Returns:
|
164 |
-
str: The path to the extracted Gaussian file.
|
|
|
165 |
"""
|
166 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
167 |
os.makedirs(user_dir, exist_ok=True)
|
168 |
-
|
|
|
|
|
|
|
169 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
170 |
gs.save_ply(gaussian_path)
|
171 |
torch.cuda.empty_cache()
|
|
|
172 |
return gaussian_path, gaussian_path
|
173 |
|
174 |
|
175 |
-
|
176 |
-
|
|
|
177 |
|
178 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
179 |
gr.Markdown("""
|
@@ -181,11 +223,11 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
181 |
* Type a text prompt and click "Generate" to create a 3D asset.
|
182 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
183 |
""")
|
184 |
-
|
185 |
with gr.Row():
|
186 |
with gr.Column():
|
187 |
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
|
188 |
-
|
189 |
with gr.Accordion(label="Generation Settings", open=False):
|
190 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
191 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
@@ -199,11 +241,11 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
199 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
|
200 |
|
201 |
generate_btn = gr.Button("Generate")
|
202 |
-
|
203 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
204 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
205 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
206 |
-
|
207 |
with gr.Row():
|
208 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
209 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
@@ -214,17 +256,21 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
214 |
with gr.Column():
|
215 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
216 |
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
|
217 |
-
|
218 |
with gr.Row():
|
219 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
220 |
-
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
221 |
-
|
|
|
|
|
222 |
output_buf = gr.State()
|
223 |
|
224 |
-
# Handlers
|
225 |
demo.load(start_session)
|
226 |
demo.unload(end_session)
|
227 |
|
|
|
|
|
228 |
generate_btn.click(
|
229 |
get_seed,
|
230 |
inputs=[randomize_seed, seed],
|
@@ -232,7 +278,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
232 |
).then(
|
233 |
text_to_3d,
|
234 |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
235 |
-
outputs=[output_buf, video_output],
|
236 |
).then(
|
237 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
238 |
outputs=[extract_glb_btn, extract_gs_btn],
|
@@ -243,18 +289,22 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
243 |
outputs=[extract_glb_btn, extract_gs_btn],
|
244 |
)
|
245 |
|
|
|
|
|
246 |
extract_glb_btn.click(
|
247 |
extract_glb,
|
248 |
-
inputs=[output_buf, mesh_simplify, texture_size],
|
249 |
outputs=[model_output, download_glb],
|
250 |
).then(
|
251 |
lambda: gr.Button(interactive=True),
|
252 |
outputs=[download_glb],
|
253 |
)
|
254 |
-
|
|
|
|
|
255 |
extract_gs_btn.click(
|
256 |
extract_gaussian,
|
257 |
-
inputs=[output_buf],
|
258 |
outputs=[model_output, download_gs],
|
259 |
).then(
|
260 |
lambda: gr.Button(interactive=True),
|
@@ -262,13 +312,25 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
262 |
)
|
263 |
|
264 |
model_output.clear(
|
265 |
-
lambda: gr.Button(interactive=False),
|
266 |
-
outputs=[download_glb],
|
267 |
)
|
268 |
-
|
269 |
|
270 |
-
|
|
|
271 |
if __name__ == "__main__":
|
272 |
-
pipeline
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
demo.launch()
|
|
|
1 |
+
# Version: Add API State Fix (2025-05-04)
|
2 |
+
# Changes:
|
3 |
+
# - Modified `text_to_3d` to explicitly return the serializable `state_dict` from `pack_state`
|
4 |
+
# as the first return value. This ensures the dictionary is available via the API.
|
5 |
+
# - Modified `extract_glb` to accept `state_dict: dict` as its first argument instead of
|
6 |
+
# relying on the implicit `gr.State` object type when called via API.
|
7 |
+
# - Kept Gradio UI bindings (`outputs=[output_buf, ...]`, `inputs=[output_buf, ...]`)
|
8 |
+
# so the UI continues to function by passing the dictionary through output_buf.
|
9 |
+
|
10 |
import gradio as gr
|
11 |
import spaces
|
12 |
|
|
|
35 |
def start_session(req: gr.Request):
|
36 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
37 |
os.makedirs(user_dir, exist_ok=True)
|
38 |
+
|
39 |
+
|
40 |
def end_session(req: gr.Request):
|
41 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
42 |
+
# Add safety check before removing
|
43 |
+
if os.path.exists(user_dir):
|
44 |
+
try:
|
45 |
+
shutil.rmtree(user_dir)
|
46 |
+
except OSError as e:
|
47 |
+
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
|
48 |
|
49 |
|
50 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
51 |
+
# Ensure tensors are on CPU and converted to numpy before returning the dict
|
52 |
return {
|
53 |
'gaussian': {
|
54 |
**gs.init_params,
|
55 |
+
'_xyz': gs._xyz.detach().cpu().numpy(),
|
56 |
+
'_features_dc': gs._features_dc.detach().cpu().numpy(),
|
57 |
+
'_scaling': gs._scaling.detach().cpu().numpy(),
|
58 |
+
'_rotation': gs._rotation.detach().cpu().numpy(),
|
59 |
+
'_opacity': gs._opacity.detach().cpu().numpy(),
|
60 |
},
|
61 |
'mesh': {
|
62 |
+
'vertices': mesh.vertices.detach().cpu().numpy(),
|
63 |
+
'faces': mesh.faces.detach().cpu().numpy(),
|
64 |
},
|
65 |
}
|
66 |
+
|
67 |
+
|
68 |
+
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
|
69 |
+
# Ensure the device is correctly set when unpacking
|
70 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
71 |
+
|
72 |
gs = Gaussian(
|
73 |
+
aabb=state_dict['gaussian']['aabb'],
|
74 |
+
sh_degree=state_dict['gaussian']['sh_degree'],
|
75 |
+
mininum_kernel_size=state_dict['gaussian']['mininum_kernel_size'],
|
76 |
+
scaling_bias=state_dict['gaussian']['scaling_bias'],
|
77 |
+
opacity_bias=state_dict['gaussian']['opacity_bias'],
|
78 |
+
scaling_activation=state_dict['gaussian']['scaling_activation'],
|
79 |
)
|
80 |
+
gs._xyz = torch.tensor(state_dict['gaussian']['_xyz'], device=device)
|
81 |
+
gs._features_dc = torch.tensor(state_dict['gaussian']['_features_dc'], device=device)
|
82 |
+
gs._scaling = torch.tensor(state_dict['gaussian']['_scaling'], device=device)
|
83 |
+
gs._rotation = torch.tensor(state_dict['gaussian']['_rotation'], device=device)
|
84 |
+
gs._opacity = torch.tensor(state_dict['gaussian']['_opacity'], device=device)
|
85 |
+
|
86 |
mesh = edict(
|
87 |
+
vertices=torch.tensor(state_dict['mesh']['vertices'], device=device),
|
88 |
+
faces=torch.tensor(state_dict['mesh']['faces'], device=device),
|
89 |
)
|
90 |
+
|
91 |
return gs, mesh
|
92 |
|
93 |
|
|
|
107 |
slat_guidance_strength: float,
|
108 |
slat_sampling_steps: int,
|
109 |
req: gr.Request,
|
110 |
+
) -> Tuple[dict, str]: # <- Changed return annotation for clarity
|
111 |
"""
|
112 |
Convert an text prompt to a 3D model.
|
113 |
Args:
|
|
|
118 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
119 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
120 |
Returns:
|
121 |
+
dict: The *serializable dictionary* representing the state of the generated 3D model. <-- CHANGE
|
122 |
+
str: The path to the video preview of the 3D model.
|
123 |
"""
|
124 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
125 |
os.makedirs(user_dir, exist_ok=True)
|
126 |
+
|
127 |
+
# --- Generation Pipeline ---
|
128 |
outputs = pipeline.run(
|
129 |
prompt,
|
130 |
seed=seed,
|
131 |
+
formats=["gaussian", "mesh"], # Ensure both are generated
|
132 |
sparse_structure_sampler_params={
|
133 |
"steps": ss_sampling_steps,
|
134 |
"cfg_strength": ss_guidance_strength,
|
|
|
138 |
"cfg_strength": slat_guidance_strength,
|
139 |
},
|
140 |
)
|
141 |
+
|
142 |
+
# --- Create Serializable State Dictionary --- VITAL CHANGE for API
|
143 |
+
# Instead of returning the raw state object, return a serializable dictionary
|
144 |
+
# which can be passed via the API correctly.
|
145 |
+
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
146 |
+
|
147 |
+
# --- Render Video Preview ---
|
148 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
149 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
150 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
151 |
video_path = os.path.join(user_dir, 'sample.mp4')
|
152 |
imageio.mimsave(video_path, video, fps=15)
|
153 |
+
|
154 |
torch.cuda.empty_cache()
|
155 |
+
|
156 |
+
# --- Return Serializable Dictionary and Video Path --- VITAL CHANGE for API
|
157 |
+
return state_dict, video_path
|
158 |
|
159 |
|
160 |
@spaces.GPU(duration=90)
|
161 |
def extract_glb(
|
162 |
+
state_dict: dict, # <-- VITAL CHANGE: Accept the dictionary directly
|
163 |
mesh_simplify: float,
|
164 |
texture_size: int,
|
165 |
req: gr.Request,
|
166 |
) -> Tuple[str, str]:
|
167 |
"""
|
168 |
+
Extract a GLB file from the 3D model state dictionary.
|
169 |
Args:
|
170 |
+
state_dict (dict): The serializable dictionary state of the generated 3D model. <-- CHANGE
|
171 |
mesh_simplify (float): The mesh simplification factor.
|
172 |
texture_size (int): The texture resolution.
|
173 |
Returns:
|
174 |
+
str: The path to the extracted GLB file (for Model3D component).
|
175 |
+
str: The path to the extracted GLB file (for DownloadButton).
|
176 |
"""
|
177 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
178 |
os.makedirs(user_dir, exist_ok=True)
|
179 |
+
|
180 |
+
# --- Unpack state from the dictionary --- VITAL CHANGE for API
|
181 |
+
gs, mesh = unpack_state(state_dict)
|
182 |
+
|
183 |
+
# --- Postprocessing and Export ---
|
184 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
185 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
186 |
glb.export(glb_path)
|
187 |
+
|
188 |
torch.cuda.empty_cache()
|
189 |
+
# Return path twice for both Model3D and DownloadButton components
|
190 |
return glb_path, glb_path
|
191 |
|
192 |
|
193 |
@spaces.GPU
|
194 |
+
def extract_gaussian(state_dict: dict, req: gr.Request) -> Tuple[str, str]: # <-- CHANGE: Accept dict
|
195 |
"""
|
196 |
+
Extract a Gaussian file from the 3D model state dictionary.
|
197 |
Args:
|
198 |
+
state_dict (dict): The serializable dictionary state of the generated 3D model. <-- CHANGE
|
199 |
Returns:
|
200 |
+
str: The path to the extracted Gaussian file (for Model3D component).
|
201 |
+
str: The path to the extracted Gaussian file (for DownloadButton).
|
202 |
"""
|
203 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
204 |
os.makedirs(user_dir, exist_ok=True)
|
205 |
+
|
206 |
+
# --- Unpack state from the dictionary --- VITAL CHANGE for API
|
207 |
+
gs, _ = unpack_state(state_dict)
|
208 |
+
|
209 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
210 |
gs.save_ply(gaussian_path)
|
211 |
torch.cuda.empty_cache()
|
212 |
+
# Return path twice for both Model3D and DownloadButton components
|
213 |
return gaussian_path, gaussian_path
|
214 |
|
215 |
|
216 |
+
# --- Gradio UI Definition ---
|
217 |
+
# output_buf = gr.State() # No change needed here, it will now hold the dict
|
218 |
+
# video_output = gr.Video(...) # No change needed
|
219 |
|
220 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
221 |
gr.Markdown("""
|
|
|
223 |
* Type a text prompt and click "Generate" to create a 3D asset.
|
224 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
225 |
""")
|
226 |
+
|
227 |
with gr.Row():
|
228 |
with gr.Column():
|
229 |
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
|
230 |
+
|
231 |
with gr.Accordion(label="Generation Settings", open=False):
|
232 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
233 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
|
|
241 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
|
242 |
|
243 |
generate_btn = gr.Button("Generate")
|
244 |
+
|
245 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
246 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
247 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
248 |
+
|
249 |
with gr.Row():
|
250 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
251 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
|
|
256 |
with gr.Column():
|
257 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
258 |
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
|
259 |
+
|
260 |
with gr.Row():
|
261 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
262 |
+
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
263 |
+
|
264 |
+
# --- State Buffer ---
|
265 |
+
# This will now hold the dictionary returned by text_to_3d
|
266 |
output_buf = gr.State()
|
267 |
|
268 |
+
# --- Handlers ---
|
269 |
demo.load(start_session)
|
270 |
demo.unload(end_session)
|
271 |
|
272 |
+
# --- Generate Button Click Flow ---
|
273 |
+
# No changes needed to the structure, but text_to_3d now puts the dictionary into output_buf
|
274 |
generate_btn.click(
|
275 |
get_seed,
|
276 |
inputs=[randomize_seed, seed],
|
|
|
278 |
).then(
|
279 |
text_to_3d,
|
280 |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
281 |
+
outputs=[output_buf, video_output], # output_buf receives state_dict
|
282 |
).then(
|
283 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
284 |
outputs=[extract_glb_btn, extract_gs_btn],
|
|
|
289 |
outputs=[extract_glb_btn, extract_gs_btn],
|
290 |
)
|
291 |
|
292 |
+
# --- Extract GLB Button Click Flow ---
|
293 |
+
# The input 'output_buf' now contains the state_dict needed by the modified extract_glb function
|
294 |
extract_glb_btn.click(
|
295 |
extract_glb,
|
296 |
+
inputs=[output_buf, mesh_simplify, texture_size], # Pass the state_dict via output_buf
|
297 |
outputs=[model_output, download_glb],
|
298 |
).then(
|
299 |
lambda: gr.Button(interactive=True),
|
300 |
outputs=[download_glb],
|
301 |
)
|
302 |
+
|
303 |
+
# --- Extract Gaussian Button Click Flow ---
|
304 |
+
# The input 'output_buf' now contains the state_dict needed by the modified extract_gaussian function
|
305 |
extract_gs_btn.click(
|
306 |
extract_gaussian,
|
307 |
+
inputs=[output_buf], # Pass the state_dict via output_buf
|
308 |
outputs=[model_output, download_gs],
|
309 |
).then(
|
310 |
lambda: gr.Button(interactive=True),
|
|
|
312 |
)
|
313 |
|
314 |
model_output.clear(
|
315 |
+
lambda: gr.Button(interactive=False), # Should clear both potentially?
|
316 |
+
outputs=[download_glb, download_gs], # Clear both download buttons
|
317 |
)
|
|
|
318 |
|
319 |
+
|
320 |
+
# --- Launch the Gradio app ---
|
321 |
if __name__ == "__main__":
|
322 |
+
# Consider adding error handling for pipeline loading
|
323 |
+
try:
|
324 |
+
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
|
325 |
+
# Move to GPU if available
|
326 |
+
if torch.cuda.is_available():
|
327 |
+
pipeline.cuda()
|
328 |
+
else:
|
329 |
+
print("WARNING: CUDA not available, running on CPU (will be very slow).")
|
330 |
+
print("✅ Trellis pipeline loaded successfully.")
|
331 |
+
except Exception as e:
|
332 |
+
print(f"❌ Failed to load Trellis pipeline: {e}", file=sys.stderr)
|
333 |
+
# Optionally exit if pipeline is critical
|
334 |
+
# sys.exit(1)
|
335 |
+
|
336 |
demo.launch()
|