dfedukov's picture
Create app.py
c23c7fd verified
raw
history blame
1.55 kB
import streamlit as st
import torch
from transformers import DistilBertForSequenceClassification, DistilBertTokenizerFast
target_to_ind =
{'cs': 0,
'econ': 1,
'eess': 2,
'math': 3,
'phys': 4,
'q-bio': 5,
'q-fin': 6,
'stat': 7}
ind_to_target = {ind: target for target, ind in target_to_ind.items()}
@st.cache_resource
def load_model_and_tokenizer():
model_name = 'distilbert/distilbert-base-cased'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained("./weights/model.safetensors", num_labels=len(target_to_ind))
return model, tokenizer
def get_predict(title: str, abstract: str) -> (str, float, dict):
tokenized_text = tokenizer(title + tokenizer.sep_token + abstact[:128], padding="max_length", truncation=True)
with torch.no_grad():
outputs = model(tokenized_text)
probs = torch.nn.functional.softmax(out.logits, dim=-1)
return list(sorted([(p, ind_to_target[i]) for i, p in enumerate(probs)], reversed=True))
title = st.text_area("Title ", "", height=100)
abstract = st.text_area("Abstract ", "", height=150)
if st.button("Классифицировать", key="manual"):
if len(title_text) == 0:
st.error("Please, provide paper's title")
else:
with st.spinner("Be patient, I'm doing my best"):
predict = get_predict(title, abstract)
st.success(f"Предсказанный тэг: **{predict[0][1]}**")
model, tokenizer = load_model_and_tokenizer()