dfedukov commited on
Commit
c23c7fd
·
verified ·
1 Parent(s): 10c5ff7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -0
app.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import DistilBertForSequenceClassification, DistilBertTokenizerFast
4
+
5
+
6
+ target_to_ind =
7
+ {'cs': 0,
8
+ 'econ': 1,
9
+ 'eess': 2,
10
+ 'math': 3,
11
+ 'phys': 4,
12
+ 'q-bio': 5,
13
+ 'q-fin': 6,
14
+ 'stat': 7}
15
+
16
+ ind_to_target = {ind: target for target, ind in target_to_ind.items()}
17
+
18
+ @st.cache_resource
19
+ def load_model_and_tokenizer():
20
+ model_name = 'distilbert/distilbert-base-cased'
21
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
22
+ model = AutoModelForSequenceClassification.from_pretrained("./weights/model.safetensors", num_labels=len(target_to_ind))
23
+
24
+ return model, tokenizer
25
+
26
+
27
+ def get_predict(title: str, abstract: str) -> (str, float, dict):
28
+ tokenized_text = tokenizer(title + tokenizer.sep_token + abstact[:128], padding="max_length", truncation=True)
29
+
30
+ with torch.no_grad():
31
+ outputs = model(tokenized_text)
32
+ probs = torch.nn.functional.softmax(out.logits, dim=-1)
33
+
34
+ return list(sorted([(p, ind_to_target[i]) for i, p in enumerate(probs)], reversed=True))
35
+
36
+
37
+ title = st.text_area("Title ", "", height=100)
38
+ abstract = st.text_area("Abstract ", "", height=150)
39
+
40
+ if st.button("Классифицировать", key="manual"):
41
+ if len(title_text) == 0:
42
+ st.error("Please, provide paper's title")
43
+ else:
44
+ with st.spinner("Be patient, I'm doing my best"):
45
+ predict = get_predict(title, abstract)
46
+ st.success(f"Предсказанный тэг: **{predict[0][1]}**")
47
+
48
+
49
+ model, tokenizer = load_model_and_tokenizer()