Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import DistilBertForSequenceClassification, DistilBertTokenizerFast
|
4 |
+
|
5 |
+
|
6 |
+
target_to_ind =
|
7 |
+
{'cs': 0,
|
8 |
+
'econ': 1,
|
9 |
+
'eess': 2,
|
10 |
+
'math': 3,
|
11 |
+
'phys': 4,
|
12 |
+
'q-bio': 5,
|
13 |
+
'q-fin': 6,
|
14 |
+
'stat': 7}
|
15 |
+
|
16 |
+
ind_to_target = {ind: target for target, ind in target_to_ind.items()}
|
17 |
+
|
18 |
+
@st.cache_resource
|
19 |
+
def load_model_and_tokenizer():
|
20 |
+
model_name = 'distilbert/distilbert-base-cased'
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
+
model = AutoModelForSequenceClassification.from_pretrained("./weights/model.safetensors", num_labels=len(target_to_ind))
|
23 |
+
|
24 |
+
return model, tokenizer
|
25 |
+
|
26 |
+
|
27 |
+
def get_predict(title: str, abstract: str) -> (str, float, dict):
|
28 |
+
tokenized_text = tokenizer(title + tokenizer.sep_token + abstact[:128], padding="max_length", truncation=True)
|
29 |
+
|
30 |
+
with torch.no_grad():
|
31 |
+
outputs = model(tokenized_text)
|
32 |
+
probs = torch.nn.functional.softmax(out.logits, dim=-1)
|
33 |
+
|
34 |
+
return list(sorted([(p, ind_to_target[i]) for i, p in enumerate(probs)], reversed=True))
|
35 |
+
|
36 |
+
|
37 |
+
title = st.text_area("Title ", "", height=100)
|
38 |
+
abstract = st.text_area("Abstract ", "", height=150)
|
39 |
+
|
40 |
+
if st.button("Классифицировать", key="manual"):
|
41 |
+
if len(title_text) == 0:
|
42 |
+
st.error("Please, provide paper's title")
|
43 |
+
else:
|
44 |
+
with st.spinner("Be patient, I'm doing my best"):
|
45 |
+
predict = get_predict(title, abstract)
|
46 |
+
st.success(f"Предсказанный тэг: **{predict[0][1]}**")
|
47 |
+
|
48 |
+
|
49 |
+
model, tokenizer = load_model_and_tokenizer()
|