Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification | |
from safetensors.torch import load_file as safe_load | |
target_to_ind = {'cs': 0, 'econ': 1, 'eess': 2, 'math': 3, 'phys': 4, 'q-bio': 5, 'q-fin': 6, 'stat': 7} | |
ind_to_target = {ind: target for target, ind in target_to_ind.items()} | |
def load_model_and_tokenizer(): | |
model_name = 'distilbert/distilbert-base-cased' | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(target_to_ind)) | |
state_dict = safe_load("model.safetensors") | |
model.load_state_dict(state_dict) | |
return model, tokenizer | |
def get_predict(title: str, abstract: str) -> (str, float, dict): | |
tokenized_text = tokenizer(title + tokenizer.sep_token + abstact[:128], padding="max_length", truncation=True) | |
with torch.no_grad(): | |
outputs = model(tokenized_text) | |
probs = torch.nn.functional.softmax(out.logits, dim=-1) | |
return list(sorted([(p, ind_to_target[i]) for i, p in enumerate(probs)], reversed=True)) | |
title = st.text_area("Title ", "", height=100) | |
abstract = st.text_area("Abstract ", "", height=150) | |
if st.button("Классифицировать", key="manual"): | |
if len(title_text) == 0: | |
st.error("Please, provide paper's title") | |
else: | |
with st.spinner("Be patient, I'm doing my best"): | |
predict = get_predict(title, abstract) | |
st.success(f"Предсказанный тэг: **{predict[0][1]}**") | |
model, tokenizer = load_model_and_tokenizer() |