Spaces:
Sleeping
Sleeping
File size: 1,663 Bytes
c23c7fd 4b87ee5 c0a3229 c23c7fd c3b53de c23c7fd 71a36a2 c23c7fd ccf784a c23c7fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from safetensors.torch import load_file as safe_load
target_to_ind = {'cs': 0, 'econ': 1, 'eess': 2, 'math': 3, 'phys': 4, 'q-bio': 5, 'q-fin': 6, 'stat': 7}
ind_to_target = {ind: target for target, ind in target_to_ind.items()}
@st.cache_resource
def load_model_and_tokenizer():
model_name = 'distilbert/distilbert-base-cased'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(target_to_ind))
state_dict = safe_load("model.safetensors")
model.load_state_dict(state_dict)
return model, tokenizer
def get_predict(title: str, abstract: str) -> (str, float, dict):
tokenized_text = tokenizer(title + tokenizer.sep_token + abstact[:128], padding="max_length", truncation=True)
with torch.no_grad():
outputs = model(tokenized_text)
probs = torch.nn.functional.softmax(out.logits, dim=-1)
return list(sorted([(p, ind_to_target[i]) for i, p in enumerate(probs)], reversed=True))
title = st.text_area("Title ", "", height=100)
abstract = st.text_area("Abstract ", "", height=150)
if st.button("Классифицировать", key="manual"):
if len(title_text) == 0:
st.error("Please, provide paper's title")
else:
with st.spinner("Be patient, I'm doing my best"):
predict = get_predict(title, abstract)
st.success(f"Предсказанный тэг: **{predict[0][1]}**")
model, tokenizer = load_model_and_tokenizer() |