Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import random | |
import os | |
# import spaces #[uncomment to use ZeroGPU] | |
from diffusers import DiffusionPipeline, StableDiffusionPipeline | |
from peft import PeftModel, LoraConfig | |
import torch | |
from typing import Optional | |
def get_lora_sd_pipeline( | |
ckpt_dir='./lora_logos', | |
base_model_name_or_path=None, | |
dtype=torch.float16, | |
adapter_name="default" | |
): | |
unet_sub_dir = os.path.join(ckpt_dir, "unet") | |
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") | |
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None: | |
config = LoraConfig.from_pretrained(text_encoder_sub_dir) | |
base_model_name_or_path = config.base_model_name_or_path | |
if base_model_name_or_path is None: | |
raise ValueError("Please specify the base model name or path") | |
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype) | |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) | |
print(os.path.exists(unet_sub_dir)) | |
print(unet_sub_dir) | |
print(dtype) | |
if os.path.exists(text_encoder_sub_dir): | |
pipe.text_encoder = PeftModel.from_pretrained( | |
pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name | |
) | |
if dtype in (torch.float16, torch.bfloat16): | |
pipe.unet.half() | |
pipe.text_encoder.half() | |
return pipe | |
def split_prompt(prompt, tokenizer, max_length=77): | |
tokens = tokenizer(prompt, truncation=False)["input_ids"] | |
chunks = [tokens[i:i + max_length] for i in range(0, len(tokens), max_length)] | |
return chunks | |
def get_prompt_embeds(prompt_chunks, text_encoder): | |
prompt_embeds = [] | |
for chunk in prompt_chunks: | |
chunk_tensor = torch.tensor([chunk]).to(text_encoder.device) | |
with torch.no_grad(): | |
embeds = text_encoder(chunk_tensor)[0] | |
prompt_embeds.append(embeds) | |
return torch.cat(prompt_embeds, dim=1) | |
def shape_alignment(prompt_embeds, negative_prompt_embeds): | |
max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1]) | |
def pad_to_max_length(tensor, target_length): | |
padding = target_length - tensor.shape[1] | |
if padding > 0: | |
pad_tensor = torch.zeros( | |
tensor.shape[0], padding, tensor.shape[2], device=tensor.device | |
) | |
tensor = torch.cat([tensor, pad_tensor], dim=1) | |
return tensor | |
prompt_embeds = pad_to_max_length(prompt_embeds, max_length) | |
negative_prompt_embeds = pad_to_max_length(negative_prompt_embeds, max_length) | |
assert prompt_embeds.shape == negative_prompt_embeds.shape, "Shapes do not match!" | |
return prompt_embeds, negative_prompt_embeds | |
def prompts_embeddings(prompt, negative_promt, tokenizer, text_encoder): | |
prompt_chunks = split_prompt(prompt, tokenizer) | |
negative_prompt_chunks = split_prompt(negative_prompt, tokenizer) | |
prompt_embeds = get_prompt_embeds(prompt_chunks, text_encoder) | |
negative_prompt_embeds = get_prompt_embeds(negative_prompt_chunks, text_encoder) | |
prompt_embeds, negative_prompt_embeds = shape_alignment(prompt_embeds, negative_prompt_embeds) | |
return prompt_embeds, negative_prompt_embeds | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_id_default = "CompVis/stable-diffusion-v1-4" | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
pipe_default = get_lora_sd_pipeline( | |
ckpt_dir='./lora_logos', | |
base_model_name_or_path=model_id_default, | |
dtype=torch_dtype, | |
) | |
# pipe_default = DiffusionPipeline.from_pretrained(model_id_default, torch_dtype=torch_dtype) | |
pipe_default = pipe_default.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# @spaces.GPU #[uncomment to use ZeroGPU] | |
def infer( | |
prompt: str, | |
negative_prompt: str, | |
width: int, | |
height: int, | |
num_inference_steps: Optional[int] = 20, | |
model_id: Optional[str] = 'CompVis/stable-diffusion-v1-4', | |
seed: Optional[int] = 42, | |
guidance_scale: Optional[float] = 7.0, | |
lora_scale: Optional[float] = 0.5, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
generator = torch.Generator().manual_seed(seed) | |
params = { | |
# 'prompt': prompt, | |
# 'negative_prompt': negative_prompt, | |
'guidance_scale': guidance_scale, | |
'num_inference_steps': num_inference_steps, | |
'width': width, | |
'height': height, | |
'generator': generator, | |
} | |
if model_id != model_id_default: | |
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) | |
pipe = pipe.to(device) | |
image = pipe(**params).images[0] | |
else: | |
print('----') | |
print(lora_scale) | |
print(prompt) | |
print(negative_prompt) | |
prompt_embeds, negative_prompt_embeds = prompts_embeddings( | |
prompt, | |
negative_prompt, | |
pipe_default.tokenizer, | |
pipe_default.text_encoder | |
) | |
params['prompt_embeds'] = prompt_embeds | |
params['negative_prompt_embeds']=negative_prompt_embeds | |
pipe_default.fuse_lora(lora_scale=lora_scale) | |
image = pipe_default(**params).images[0] | |
return image | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # DEMO Text-to-Image") | |
with gr.Row(): | |
model_id = gr.Textbox( | |
label="Model ID", | |
max_lines=1, | |
placeholder="Enter model id like 'CompVis/stable-diffusion-v1-4'", | |
value="CompVis/stable-diffusion-v1-4" | |
) | |
prompt = gr.Textbox( | |
label="Prompt", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
with gr.Row(): | |
seed = gr.Number( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.0, | |
) | |
with gr.Row(): | |
lora_scale = gr.Slider( | |
label="LoRA scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.5, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=20, | |
) | |
with gr.Accordion("Optional Settings", open=False): | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Row(): | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
run_button = gr.Button("Run", scale=1, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
width, | |
height, | |
num_inference_steps, | |
model_id, | |
seed, | |
guidance_scale, | |
lora_scale, | |
], | |
outputs=[result], | |
) | |
if __name__ == "__main__": | |
demo.launch() |