Spaces:
Running
Running
File size: 8,048 Bytes
863f08e 1f7518e 863f08e 1f7518e 863f08e 863413c 863f08e 1f7518e 077767b 1f7518e c9f36bf 1f7518e c9f36bf 863f08e e61c05b 863f08e 1f7518e e61c05b 863f08e 863413c 53ddaff 863413c 1f7518e 124feae 863f08e e61c05b c9f36bf e61c05b e5f2339 863413c e61c05b c9f36bf 3ca8699 e61c05b 863413c cec3a8b 863f08e 863413c 863f08e 863413c 863f08e 863413c 863f08e 863413c 863f08e 863413c 863f08e 863413c 863f08e 863413c 863f08e 863413c 863f08e 1f7518e 53ddaff 863413c 863f08e 3ca8699 863f08e 863413c 863f08e 3ca8699 863f08e 863413c 863f08e 124feae 1f7518e 863f08e cec3a8b 863f08e df4b467 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import gradio as gr
import numpy as np
import random
import os
# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, StableDiffusionPipeline
from peft import PeftModel, LoraConfig
import torch
from typing import Optional
def get_lora_sd_pipeline(
ckpt_dir='./lora_logos',
base_model_name_or_path=None,
dtype=torch.float16,
adapter_name="default"
):
unet_sub_dir = os.path.join(ckpt_dir, "unet")
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
base_model_name_or_path = config.base_model_name_or_path
if base_model_name_or_path is None:
raise ValueError("Please specify the base model name or path")
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
print(os.path.exists(unet_sub_dir))
print(unet_sub_dir)
print(dtype)
if os.path.exists(text_encoder_sub_dir):
pipe.text_encoder = PeftModel.from_pretrained(
pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name
)
if dtype in (torch.float16, torch.bfloat16):
pipe.unet.half()
pipe.text_encoder.half()
return pipe
def split_prompt(prompt, tokenizer, max_length=77):
tokens = tokenizer(prompt, truncation=False)["input_ids"]
chunks = [tokens[i:i + max_length] for i in range(0, len(tokens), max_length)]
return chunks
def get_prompt_embeds(prompt_chunks, text_encoder):
prompt_embeds = []
for chunk in prompt_chunks:
chunk_tensor = torch.tensor([chunk]).to(text_encoder.device)
with torch.no_grad():
embeds = text_encoder(chunk_tensor)[0]
prompt_embeds.append(embeds)
return torch.cat(prompt_embeds, dim=1)
def shape_alignment(prompt_embeds, negative_prompt_embeds):
max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
def pad_to_max_length(tensor, target_length):
padding = target_length - tensor.shape[1]
if padding > 0:
pad_tensor = torch.zeros(
tensor.shape[0], padding, tensor.shape[2], device=tensor.device
)
tensor = torch.cat([tensor, pad_tensor], dim=1)
return tensor
prompt_embeds = pad_to_max_length(prompt_embeds, max_length)
negative_prompt_embeds = pad_to_max_length(negative_prompt_embeds, max_length)
assert prompt_embeds.shape == negative_prompt_embeds.shape, "Shapes do not match!"
return prompt_embeds, negative_prompt_embeds
def prompts_embeddings(prompt, negative_promt, tokenizer, text_encoder):
prompt_chunks = split_prompt(prompt, tokenizer)
negative_prompt_chunks = split_prompt(negative_prompt, tokenizer)
prompt_embeds = get_prompt_embeds(prompt_chunks, text_encoder)
negative_prompt_embeds = get_prompt_embeds(negative_prompt_chunks, text_encoder)
prompt_embeds, negative_prompt_embeds = shape_alignment(prompt_embeds, negative_prompt_embeds)
return prompt_embeds, negative_prompt_embeds
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id_default = "CompVis/stable-diffusion-v1-4"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe_default = get_lora_sd_pipeline(
ckpt_dir='./lora_logos',
base_model_name_or_path=model_id_default,
dtype=torch_dtype,
)
# pipe_default = DiffusionPipeline.from_pretrained(model_id_default, torch_dtype=torch_dtype)
pipe_default = pipe_default.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt: str,
negative_prompt: str,
width: int,
height: int,
num_inference_steps: Optional[int] = 20,
model_id: Optional[str] = 'CompVis/stable-diffusion-v1-4',
seed: Optional[int] = 42,
guidance_scale: Optional[float] = 7.0,
lora_scale: Optional[float] = 0.5,
progress=gr.Progress(track_tqdm=True),
):
generator = torch.Generator().manual_seed(seed)
params = {
# 'prompt': prompt,
# 'negative_prompt': negative_prompt,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator,
}
if model_id != model_id_default:
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
image = pipe(**params).images[0]
else:
print('----')
print(lora_scale)
print(prompt)
print(negative_prompt)
prompt_embeds, negative_prompt_embeds = prompts_embeddings(
prompt,
negative_prompt,
pipe_default.tokenizer,
pipe_default.text_encoder
)
params['prompt_embeds'] = prompt_embeds
params['negative_prompt_embeds']=negative_prompt_embeds
pipe_default.fuse_lora(lora_scale=lora_scale)
image = pipe_default(**params).images[0]
return image
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # DEMO Text-to-Image")
with gr.Row():
model_id = gr.Textbox(
label="Model ID",
max_lines=1,
placeholder="Enter model id like 'CompVis/stable-diffusion-v1-4'",
value="CompVis/stable-diffusion-v1-4"
)
prompt = gr.Textbox(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
with gr.Row():
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
with gr.Accordion("Optional Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
run_button = gr.Button("Run", scale=1, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
num_inference_steps,
model_id,
seed,
guidance_scale,
lora_scale,
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch() |