File size: 8,048 Bytes
863f08e
 
 
1f7518e
863f08e
 
1f7518e
 
863f08e
863413c
863f08e
1f7518e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
077767b
1f7518e
c9f36bf
 
 
1f7518e
 
 
 
 
 
 
 
 
 
 
c9f36bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863f08e
e61c05b
863f08e
 
 
 
 
 
1f7518e
 
 
 
 
 
 
e61c05b
863f08e
 
 
 
 
 
 
863413c
 
 
 
53ddaff
863413c
 
 
1f7518e
124feae
863f08e
 
 
e61c05b
c9f36bf
 
e61c05b
 
 
 
 
 
 
e5f2339
863413c
 
e61c05b
 
c9f36bf
 
 
 
 
 
 
 
 
 
 
 
3ca8699
e61c05b
863413c
cec3a8b
863f08e
 
 
 
 
 
 
 
 
 
863413c
 
863f08e
 
863413c
 
863f08e
863413c
 
863f08e
 
863413c
 
 
 
 
863f08e
863413c
 
 
 
 
863f08e
863413c
 
863f08e
 
 
 
863413c
863f08e
 
863413c
 
 
 
 
 
 
 
863f08e
1f7518e
 
 
 
 
 
 
 
 
53ddaff
 
 
 
 
 
 
 
 
863413c
863f08e
 
 
 
 
 
3ca8699
863f08e
863413c
 
863f08e
 
 
 
 
3ca8699
863f08e
 
863413c
 
 
863f08e
 
 
 
 
 
 
 
 
124feae
 
 
1f7518e
863f08e
cec3a8b
863f08e
 
 
df4b467
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import gradio as gr
import numpy as np
import random
import os

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, StableDiffusionPipeline
from peft import PeftModel, LoraConfig
import torch
from typing import Optional


def get_lora_sd_pipeline(
    ckpt_dir='./lora_logos', 
    base_model_name_or_path=None, 
    dtype=torch.float16, 
    adapter_name="default"
):
    unet_sub_dir = os.path.join(ckpt_dir, "unet")
    text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
    if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
        config = LoraConfig.from_pretrained(text_encoder_sub_dir)
        base_model_name_or_path = config.base_model_name_or_path

    if base_model_name_or_path is None:
        raise ValueError("Please specify the base model name or path")

    pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
    pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
    print(os.path.exists(unet_sub_dir))
    print(unet_sub_dir)
    print(dtype)

    if os.path.exists(text_encoder_sub_dir):
        pipe.text_encoder = PeftModel.from_pretrained(
            pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name
        )

    if dtype in (torch.float16, torch.bfloat16):
        pipe.unet.half()
        pipe.text_encoder.half()
    return pipe

def split_prompt(prompt, tokenizer, max_length=77):
    tokens = tokenizer(prompt, truncation=False)["input_ids"]
    chunks = [tokens[i:i + max_length] for i in range(0, len(tokens), max_length)]
    return chunks

def get_prompt_embeds(prompt_chunks, text_encoder):
    prompt_embeds = []
    for chunk in prompt_chunks:
        chunk_tensor = torch.tensor([chunk]).to(text_encoder.device)
        with torch.no_grad():
            embeds = text_encoder(chunk_tensor)[0]
        prompt_embeds.append(embeds)
    return torch.cat(prompt_embeds, dim=1)

def shape_alignment(prompt_embeds, negative_prompt_embeds):
    max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])

    def pad_to_max_length(tensor, target_length):
        padding = target_length - tensor.shape[1]
        if padding > 0:
            pad_tensor = torch.zeros(
                tensor.shape[0], padding, tensor.shape[2], device=tensor.device
            )
            tensor = torch.cat([tensor, pad_tensor], dim=1)
        return tensor

    prompt_embeds = pad_to_max_length(prompt_embeds, max_length)
    negative_prompt_embeds = pad_to_max_length(negative_prompt_embeds, max_length)

    assert prompt_embeds.shape == negative_prompt_embeds.shape, "Shapes do not match!"
    return prompt_embeds, negative_prompt_embeds

def prompts_embeddings(prompt, negative_promt, tokenizer, text_encoder):
    prompt_chunks = split_prompt(prompt, tokenizer)
    negative_prompt_chunks = split_prompt(negative_prompt, tokenizer)

    prompt_embeds = get_prompt_embeds(prompt_chunks, text_encoder)
    negative_prompt_embeds = get_prompt_embeds(negative_prompt_chunks, text_encoder)

    prompt_embeds, negative_prompt_embeds = shape_alignment(prompt_embeds, negative_prompt_embeds)

    return prompt_embeds, negative_prompt_embeds


device = "cuda" if torch.cuda.is_available() else "cpu"
model_id_default = "CompVis/stable-diffusion-v1-4"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32


pipe_default = get_lora_sd_pipeline(
    ckpt_dir='./lora_logos', 
    base_model_name_or_path=model_id_default, 
    dtype=torch_dtype,
    )
# pipe_default = DiffusionPipeline.from_pretrained(model_id_default, torch_dtype=torch_dtype)
pipe_default = pipe_default.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt: str,
    negative_prompt: str,
    width: int,
    height: int,
    num_inference_steps: Optional[int] = 20,
    model_id: Optional[str] = 'CompVis/stable-diffusion-v1-4',
    seed: Optional[int] = 42,
    guidance_scale: Optional[float] = 7.0,
    lora_scale: Optional[float] = 0.5,
    progress=gr.Progress(track_tqdm=True),
):
    generator = torch.Generator().manual_seed(seed)

    params = {
        # 'prompt': prompt,
        # 'negative_prompt': negative_prompt,
        'guidance_scale': guidance_scale,
        'num_inference_steps': num_inference_steps,
        'width': width,
        'height': height,
        'generator': generator,
    }

    if model_id != model_id_default:
        pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
        pipe = pipe.to(device)
        image = pipe(**params).images[0]
    else:
        print('----')
        print(lora_scale)
        print(prompt)
        print(negative_prompt)
        prompt_embeds, negative_prompt_embeds = prompts_embeddings(
            prompt, 
            negative_prompt, 
            pipe_default.tokenizer, 
            pipe_default.text_encoder
            )
        params['prompt_embeds'] = prompt_embeds
        params['negative_prompt_embeds']=negative_prompt_embeds
        pipe_default.fuse_lora(lora_scale=lora_scale)
        image = pipe_default(**params).images[0]

    return image

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        
        gr.Markdown(" # DEMO Text-to-Image")

        with gr.Row():
            model_id = gr.Textbox(
                label="Model ID",
                max_lines=1,
                placeholder="Enter model id like 'CompVis/stable-diffusion-v1-4'",
                value="CompVis/stable-diffusion-v1-4"
            )

        prompt = gr.Textbox(
            label="Prompt",
            max_lines=1,
            placeholder="Enter your prompt",
        )

        negative_prompt = gr.Textbox(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
        )

        with gr.Row():
            seed = gr.Number(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=0.0,
                maximum=10.0,
                step=0.1,
                value=7.0,
            )

        with gr.Row():
            lora_scale = gr.Slider(
                label="LoRA scale",
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.5,
            )

        with gr.Row():
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=50,
                step=1,
                value=20,
            )

        with gr.Accordion("Optional Settings", open=False):
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

        run_button = gr.Button("Run", scale=1, variant="primary")
        result = gr.Image(label="Result", show_label=False)
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            width,
            height,
            num_inference_steps,
            model_id,
            seed,
            guidance_scale,
            lora_scale,
        ],
        outputs=[result],
    )

if __name__ == "__main__":
    demo.launch()