Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,17 +5,18 @@ import random
|
|
5 |
# import spaces #[uncomment to use ZeroGPU]
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
|
11 |
|
12 |
if torch.cuda.is_available():
|
13 |
torch_dtype = torch.float16
|
14 |
else:
|
15 |
torch_dtype = torch.float32
|
16 |
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(
|
18 |
-
pipe = pipe.to(device)
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
@@ -23,21 +24,22 @@ MAX_IMAGE_SIZE = 1024
|
|
23 |
|
24 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
progress=gr.Progress(track_tqdm=True),
|
|
|
|
|
|
|
35 |
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
generator = torch.Generator().manual_seed(seed)
|
40 |
|
|
|
|
|
|
|
|
|
41 |
image = pipe(
|
42 |
prompt=prompt,
|
43 |
negative_prompt=negative_prompt,
|
@@ -48,14 +50,7 @@ def infer(
|
|
48 |
generator=generator,
|
49 |
).images[0]
|
50 |
|
51 |
-
return image,
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
|
60 |
css = """
|
61 |
#col-container {
|
@@ -66,74 +61,79 @@ css = """
|
|
66 |
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
-
|
|
|
70 |
|
71 |
with gr.Row():
|
72 |
-
|
73 |
-
label="
|
74 |
-
show_label=False,
|
75 |
max_lines=1,
|
76 |
-
placeholder="Enter
|
77 |
-
|
78 |
)
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
with gr.
|
85 |
-
|
86 |
-
label="Negative prompt",
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
-
|
92 |
-
seed = gr.Slider(
|
93 |
label="Seed",
|
94 |
minimum=0,
|
95 |
maximum=MAX_SEED,
|
96 |
step=1,
|
97 |
-
value=
|
98 |
)
|
99 |
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
|
|
102 |
with gr.Row():
|
103 |
width = gr.Slider(
|
104 |
label="Width",
|
105 |
minimum=256,
|
106 |
maximum=MAX_IMAGE_SIZE,
|
107 |
step=32,
|
108 |
-
value=1024,
|
109 |
)
|
110 |
-
|
|
|
111 |
height = gr.Slider(
|
112 |
label="Height",
|
113 |
minimum=256,
|
114 |
maximum=MAX_IMAGE_SIZE,
|
115 |
step=32,
|
116 |
-
value=1024,
|
117 |
)
|
118 |
|
119 |
with gr.Row():
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
-
|
128 |
num_inference_steps = gr.Slider(
|
129 |
label="Number of inference steps",
|
130 |
minimum=1,
|
131 |
maximum=50,
|
132 |
step=1,
|
133 |
-
value=2,
|
134 |
)
|
135 |
|
136 |
-
gr.
|
|
|
|
|
|
|
137 |
gr.on(
|
138 |
triggers=[run_button.click, prompt.submit],
|
139 |
fn=infer,
|
@@ -141,13 +141,15 @@ with gr.Blocks(css=css) as demo:
|
|
141 |
prompt,
|
142 |
negative_prompt,
|
143 |
seed,
|
144 |
-
randomize_seed,
|
145 |
width,
|
146 |
height,
|
147 |
guidance_scale,
|
148 |
num_inference_steps,
|
149 |
],
|
150 |
-
outputs=[
|
|
|
|
|
|
|
151 |
)
|
152 |
|
153 |
if __name__ == "__main__":
|
|
|
5 |
# import spaces #[uncomment to use ZeroGPU]
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
+
from typing import Optional
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
model_repo_id_default = "CompVis/stable-diffusion-v1-4"
|
12 |
|
13 |
if torch.cuda.is_available():
|
14 |
torch_dtype = torch.float16
|
15 |
else:
|
16 |
torch_dtype = torch.float32
|
17 |
|
18 |
+
# pipe = DiffusionPipeline.from_pretrained(model_repo_id_default, torch_dtype=torch_dtype)
|
19 |
+
# pipe = pipe.to(device)
|
20 |
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
MAX_IMAGE_SIZE = 1024
|
|
|
24 |
|
25 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
26 |
def infer(
|
27 |
+
prompt: str,
|
28 |
+
negative_prompt: str,
|
29 |
+
width: int,
|
30 |
+
height: int,
|
31 |
+
num_inference_steps: int,
|
|
|
|
|
|
|
32 |
progress=gr.Progress(track_tqdm=True),
|
33 |
+
model_id: Optional[str] = 'CompVis/stable-diffusion-v1-4',
|
34 |
+
seed: Optional[int] = 42,
|
35 |
+
guidance_scale: Optional[float] = 7.0,
|
36 |
):
|
|
|
|
|
|
|
37 |
generator = torch.Generator().manual_seed(seed)
|
38 |
|
39 |
+
if model_id != model_repo_id_default:
|
40 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
41 |
+
pipe = pipe.to(device)
|
42 |
+
|
43 |
image = pipe(
|
44 |
prompt=prompt,
|
45 |
negative_prompt=negative_prompt,
|
|
|
50 |
generator=generator,
|
51 |
).images[0]
|
52 |
|
53 |
+
return image, pipe.name_or_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
css = """
|
56 |
#col-container {
|
|
|
61 |
|
62 |
with gr.Blocks(css=css) as demo:
|
63 |
with gr.Column(elem_id="col-container"):
|
64 |
+
|
65 |
+
gr.Markdown(" # DEMO Text-to-Image")
|
66 |
|
67 |
with gr.Row():
|
68 |
+
model_id = gr.Textbox(
|
69 |
+
label="Model ID",
|
|
|
70 |
max_lines=1,
|
71 |
+
placeholder="Enter model id like 'CompVis/stable-diffusion-v1-4'",
|
72 |
+
value="CompVis/stable-diffusion-v1-4"
|
73 |
)
|
74 |
|
75 |
+
prompt = gr.Textbox(
|
76 |
+
label="Prompt",
|
77 |
+
max_lines=1,
|
78 |
+
placeholder="Enter your prompt",
|
79 |
+
)
|
80 |
|
81 |
+
negative_prompt = gr.Textbox(
|
82 |
+
label="Negative prompt",
|
83 |
+
max_lines=1,
|
84 |
+
placeholder="Enter a negative prompt",
|
85 |
+
)
|
86 |
|
87 |
+
with gr.Row():
|
88 |
+
seed = gr.Number(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
label="Seed",
|
90 |
minimum=0,
|
91 |
maximum=MAX_SEED,
|
92 |
step=1,
|
93 |
+
value=42,
|
94 |
)
|
95 |
|
96 |
+
with gr.Row():
|
97 |
+
guidance_scale = gr.Slider(
|
98 |
+
label="Guidance scale",
|
99 |
+
minimum=0.0,
|
100 |
+
maximum=10.0,
|
101 |
+
step=0.1,
|
102 |
+
value=7.0,
|
103 |
+
)
|
104 |
|
105 |
+
with gr.Accordion("Optional Settings", open=False):
|
106 |
with gr.Row():
|
107 |
width = gr.Slider(
|
108 |
label="Width",
|
109 |
minimum=256,
|
110 |
maximum=MAX_IMAGE_SIZE,
|
111 |
step=32,
|
112 |
+
value=1024,
|
113 |
)
|
114 |
+
|
115 |
+
with gr.Row():
|
116 |
height = gr.Slider(
|
117 |
label="Height",
|
118 |
minimum=256,
|
119 |
maximum=MAX_IMAGE_SIZE,
|
120 |
step=32,
|
121 |
+
value=1024,
|
122 |
)
|
123 |
|
124 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
num_inference_steps = gr.Slider(
|
126 |
label="Number of inference steps",
|
127 |
minimum=1,
|
128 |
maximum=50,
|
129 |
step=1,
|
130 |
+
value=2,
|
131 |
)
|
132 |
|
133 |
+
run_button = gr.Button("Run", scale=1, variant="primary")
|
134 |
+
result = gr.Image(label="Result", show_label=False)
|
135 |
+
inferenced_model_name = gr.Label(show_label=True, value=model_id.value)
|
136 |
+
|
137 |
gr.on(
|
138 |
triggers=[run_button.click, prompt.submit],
|
139 |
fn=infer,
|
|
|
141 |
prompt,
|
142 |
negative_prompt,
|
143 |
seed,
|
|
|
144 |
width,
|
145 |
height,
|
146 |
guidance_scale,
|
147 |
num_inference_steps,
|
148 |
],
|
149 |
+
outputs=[
|
150 |
+
result,
|
151 |
+
inferenced_model_name,
|
152 |
+
],
|
153 |
)
|
154 |
|
155 |
if __name__ == "__main__":
|