dezzman commited on
Commit
863413c
·
verified ·
1 Parent(s): 662bfa6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -56
app.py CHANGED
@@ -5,17 +5,18 @@ import random
5
  # import spaces #[uncomment to use ZeroGPU]
6
  from diffusers import DiffusionPipeline
7
  import torch
 
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
  if torch.cuda.is_available():
13
  torch_dtype = torch.float16
14
  else:
15
  torch_dtype = torch.float32
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
@@ -23,21 +24,22 @@ MAX_IMAGE_SIZE = 1024
23
 
24
  # @spaces.GPU #[uncomment to use ZeroGPU]
25
  def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
  progress=gr.Progress(track_tqdm=True),
 
 
 
35
  ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
  generator = torch.Generator().manual_seed(seed)
40
 
 
 
 
 
41
  image = pipe(
42
  prompt=prompt,
43
  negative_prompt=negative_prompt,
@@ -48,14 +50,7 @@ def infer(
48
  generator=generator,
49
  ).images[0]
50
 
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
 
60
  css = """
61
  #col-container {
@@ -66,74 +61,79 @@ css = """
66
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image UI")
 
70
 
71
  with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
  max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
  )
79
 
80
- run_button = gr.Button("Run", scale=0, variant="primary")
 
 
 
 
81
 
82
- result = gr.Image(label="Result", show_label=False)
 
 
 
 
83
 
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
95
  maximum=MAX_SEED,
96
  step=1,
97
- value=0,
98
  )
99
 
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
 
 
 
 
 
 
101
 
 
102
  with gr.Row():
103
  width = gr.Slider(
104
  label="Width",
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
-
 
111
  height = gr.Slider(
112
  label="Height",
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
 
119
  with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
  num_inference_steps = gr.Slider(
129
  label="Number of inference steps",
130
  minimum=1,
131
  maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
 
 
 
137
  gr.on(
138
  triggers=[run_button.click, prompt.submit],
139
  fn=infer,
@@ -141,13 +141,15 @@ with gr.Blocks(css=css) as demo:
141
  prompt,
142
  negative_prompt,
143
  seed,
144
- randomize_seed,
145
  width,
146
  height,
147
  guidance_scale,
148
  num_inference_steps,
149
  ],
150
- outputs=[result, seed],
 
 
 
151
  )
152
 
153
  if __name__ == "__main__":
 
5
  # import spaces #[uncomment to use ZeroGPU]
6
  from diffusers import DiffusionPipeline
7
  import torch
8
+ from typing import Optional
9
 
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
+ model_repo_id_default = "CompVis/stable-diffusion-v1-4"
12
 
13
  if torch.cuda.is_available():
14
  torch_dtype = torch.float16
15
  else:
16
  torch_dtype = torch.float32
17
 
18
+ # pipe = DiffusionPipeline.from_pretrained(model_repo_id_default, torch_dtype=torch_dtype)
19
+ # pipe = pipe.to(device)
20
 
21
  MAX_SEED = np.iinfo(np.int32).max
22
  MAX_IMAGE_SIZE = 1024
 
24
 
25
  # @spaces.GPU #[uncomment to use ZeroGPU]
26
  def infer(
27
+ prompt: str,
28
+ negative_prompt: str,
29
+ width: int,
30
+ height: int,
31
+ num_inference_steps: int,
 
 
 
32
  progress=gr.Progress(track_tqdm=True),
33
+ model_id: Optional[str] = 'CompVis/stable-diffusion-v1-4',
34
+ seed: Optional[int] = 42,
35
+ guidance_scale: Optional[float] = 7.0,
36
  ):
 
 
 
37
  generator = torch.Generator().manual_seed(seed)
38
 
39
+ if model_id != model_repo_id_default:
40
+ pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
41
+ pipe = pipe.to(device)
42
+
43
  image = pipe(
44
  prompt=prompt,
45
  negative_prompt=negative_prompt,
 
50
  generator=generator,
51
  ).images[0]
52
 
53
+ return image, pipe.name_or_path
 
 
 
 
 
 
 
54
 
55
  css = """
56
  #col-container {
 
61
 
62
  with gr.Blocks(css=css) as demo:
63
  with gr.Column(elem_id="col-container"):
64
+
65
+ gr.Markdown(" # DEMO Text-to-Image")
66
 
67
  with gr.Row():
68
+ model_id = gr.Textbox(
69
+ label="Model ID",
 
70
  max_lines=1,
71
+ placeholder="Enter model id like 'CompVis/stable-diffusion-v1-4'",
72
+ value="CompVis/stable-diffusion-v1-4"
73
  )
74
 
75
+ prompt = gr.Textbox(
76
+ label="Prompt",
77
+ max_lines=1,
78
+ placeholder="Enter your prompt",
79
+ )
80
 
81
+ negative_prompt = gr.Textbox(
82
+ label="Negative prompt",
83
+ max_lines=1,
84
+ placeholder="Enter a negative prompt",
85
+ )
86
 
87
+ with gr.Row():
88
+ seed = gr.Number(
 
 
 
 
 
 
 
89
  label="Seed",
90
  minimum=0,
91
  maximum=MAX_SEED,
92
  step=1,
93
+ value=42,
94
  )
95
 
96
+ with gr.Row():
97
+ guidance_scale = gr.Slider(
98
+ label="Guidance scale",
99
+ minimum=0.0,
100
+ maximum=10.0,
101
+ step=0.1,
102
+ value=7.0,
103
+ )
104
 
105
+ with gr.Accordion("Optional Settings", open=False):
106
  with gr.Row():
107
  width = gr.Slider(
108
  label="Width",
109
  minimum=256,
110
  maximum=MAX_IMAGE_SIZE,
111
  step=32,
112
+ value=1024,
113
  )
114
+
115
+ with gr.Row():
116
  height = gr.Slider(
117
  label="Height",
118
  minimum=256,
119
  maximum=MAX_IMAGE_SIZE,
120
  step=32,
121
+ value=1024,
122
  )
123
 
124
  with gr.Row():
 
 
 
 
 
 
 
 
125
  num_inference_steps = gr.Slider(
126
  label="Number of inference steps",
127
  minimum=1,
128
  maximum=50,
129
  step=1,
130
+ value=2,
131
  )
132
 
133
+ run_button = gr.Button("Run", scale=1, variant="primary")
134
+ result = gr.Image(label="Result", show_label=False)
135
+ inferenced_model_name = gr.Label(show_label=True, value=model_id.value)
136
+
137
  gr.on(
138
  triggers=[run_button.click, prompt.submit],
139
  fn=infer,
 
141
  prompt,
142
  negative_prompt,
143
  seed,
 
144
  width,
145
  height,
146
  guidance_scale,
147
  num_inference_steps,
148
  ],
149
+ outputs=[
150
+ result,
151
+ inferenced_model_name,
152
+ ],
153
  )
154
 
155
  if __name__ == "__main__":