Spaces:
Running
Running
File size: 4,075 Bytes
863f08e 863413c 863f08e e61c05b 863f08e e61c05b 863f08e 863413c 53ddaff 863413c 124feae 863f08e e61c05b e5f2339 863413c e61c05b 863413c cec3a8b 863f08e 863413c 863f08e 863413c 863f08e 863413c 863f08e 863413c 863f08e 863413c 863f08e 863413c 863f08e 863413c 863f08e 863413c 863f08e 53ddaff 863413c 863f08e 863413c 863f08e 863413c 863f08e 863413c 863f08e 863413c 863f08e 124feae 863f08e cec3a8b 863f08e df4b467 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
import numpy as np
import random
# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
from typing import Optional
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id_default = "CompVis/stable-diffusion-v1-4"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe_default = DiffusionPipeline.from_pretrained(model_id_default, torch_dtype=torch_dtype)
pipe_default = pipe_default.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt: str,
negative_prompt: str,
width: int,
height: int,
num_inference_steps: Optional[int] = 20,
model_id: Optional[str] = 'CompVis/stable-diffusion-v1-4',
seed: Optional[int] = 42,
guidance_scale: Optional[float] = 7.0,
progress=gr.Progress(track_tqdm=True),
):
generator = torch.Generator().manual_seed(seed)
params = {
'prompt': prompt,
'negative_prompt': negative_prompt,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator,
}
if model_id != model_id_default:
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
image = pipe(**params).images[0]
else:
image = pipe_default(**params).images[0]
return image
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # DEMO Text-to-Image")
with gr.Row():
model_id = gr.Textbox(
label="Model ID",
max_lines=1,
placeholder="Enter model id like 'CompVis/stable-diffusion-v1-4'",
value="CompVis/stable-diffusion-v1-4"
)
prompt = gr.Textbox(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
with gr.Accordion("Optional Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
run_button = gr.Button("Run", scale=1, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
num_inference_steps,
model_id,
seed,
guidance_scale,
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch() |