|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import roc_auc_score |
|
from lightgbm import LGBMClassifier |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
freq_encoder = train_data["f_27"].value_counts(normalize=True) |
|
train_data["f_27"] = train_data["f_27"].map(freq_encoder) |
|
test_data["f_27"] = test_data["f_27"].map(freq_encoder).fillna(0) |
|
|
|
|
|
X = train_data.drop(["id", "target"], axis=1) |
|
y = train_data["target"] |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
model = LGBMClassifier() |
|
|
|
|
|
model.fit(X_train, y_train) |
|
|
|
|
|
val_probs = model.predict_proba(X_val)[:, 1] |
|
|
|
|
|
val_auc = roc_auc_score(y_val, val_probs) |
|
print(f"Validation ROC AUC Score: {val_auc}") |
|
|
|
|
|
test_probs = model.predict_proba(test_data.drop(["id"], axis=1))[:, 1] |
|
|
|
|
|
submission = pd.DataFrame({"id": test_data["id"], "target": test_probs}) |
|
submission.to_csv("./working/submission.csv", index=False) |
|
|