import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score from lightgbm import LGBMClassifier # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Frequency encode the 'f_27' feature freq_encoder = train_data["f_27"].value_counts(normalize=True) train_data["f_27"] = train_data["f_27"].map(freq_encoder) test_data["f_27"] = test_data["f_27"].map(freq_encoder).fillna(0) # Separate features and target X = train_data.drop(["id", "target"], axis=1) y = train_data["target"] # Split the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize the model model = LGBMClassifier() # Train the model model.fit(X_train, y_train) # Predict probabilities for the validation set val_probs = model.predict_proba(X_val)[:, 1] # Calculate the ROC AUC score val_auc = roc_auc_score(y_val, val_probs) print(f"Validation ROC AUC Score: {val_auc}") # Predict probabilities for the test set test_probs = model.predict_proba(test_data.drop(["id"], axis=1))[:, 1] # Create a submission file submission = pd.DataFrame({"id": test_data["id"], "target": test_probs}) submission.to_csv("./working/submission.csv", index=False)