|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import roc_auc_score |
|
from lightgbm import LGBMClassifier |
|
from sklearn.preprocessing import OneHotEncoder |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
y = train_data.target |
|
X = train_data.drop(["target", "id"], axis=1) |
|
X_test = test_data.drop(["id"], axis=1) |
|
|
|
|
|
cat_cols = [col for col in X.columns if "cat" in col] |
|
encoder = OneHotEncoder(handle_unknown="ignore", sparse=False) |
|
X_encoded = pd.DataFrame(encoder.fit_transform(X[cat_cols])) |
|
X_test_encoded = pd.DataFrame(encoder.transform(X_test[cat_cols])) |
|
|
|
|
|
X_encoded.index = X.index |
|
X_test_encoded.index = X_test.index |
|
|
|
|
|
num_X = X.drop(cat_cols, axis=1) |
|
num_X_test = X_test.drop(cat_cols, axis=1) |
|
|
|
|
|
X_final = pd.concat([num_X, X_encoded], axis=1) |
|
X_test_final = pd.concat([num_X_test, X_test_encoded], axis=1) |
|
|
|
|
|
X_train, X_valid, y_train, y_valid = train_test_split( |
|
X_final, y, train_size=0.8, test_size=0.2, random_state=0 |
|
) |
|
|
|
|
|
model = LGBMClassifier() |
|
|
|
|
|
model.fit(X_train, y_train) |
|
|
|
|
|
val_predictions = model.predict_proba(X_valid)[:, 1] |
|
|
|
|
|
val_auc = roc_auc_score(y_valid, val_predictions) |
|
|
|
|
|
print(f"Validation AUC: {val_auc}") |
|
|
|
|
|
test_predictions = model.predict_proba(X_test_final)[:, 1] |
|
|
|
|
|
output = pd.DataFrame({"id": test_data.id, "target": test_predictions}) |
|
output.to_csv("./working/submission.csv", index=False) |
|
|