import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score from lightgbm import LGBMClassifier from sklearn.preprocessing import OneHotEncoder # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Separate target from predictors y = train_data.target X = train_data.drop(["target", "id"], axis=1) X_test = test_data.drop(["id"], axis=1) # One-hot encode the categorical data cat_cols = [col for col in X.columns if "cat" in col] encoder = OneHotEncoder(handle_unknown="ignore", sparse=False) X_encoded = pd.DataFrame(encoder.fit_transform(X[cat_cols])) X_test_encoded = pd.DataFrame(encoder.transform(X_test[cat_cols])) # One-hot encoding removed index; put it back X_encoded.index = X.index X_test_encoded.index = X_test.index # Remove categorical columns (will replace with one-hot encoding) num_X = X.drop(cat_cols, axis=1) num_X_test = X_test.drop(cat_cols, axis=1) # Add one-hot encoded columns to numerical features X_final = pd.concat([num_X, X_encoded], axis=1) X_test_final = pd.concat([num_X_test, X_test_encoded], axis=1) # Split the data into training and validation sets X_train, X_valid, y_train, y_valid = train_test_split( X_final, y, train_size=0.8, test_size=0.2, random_state=0 ) # Define the model model = LGBMClassifier() # Train the model model.fit(X_train, y_train) # Predict on the validation set val_predictions = model.predict_proba(X_valid)[:, 1] # Calculate the AUC score val_auc = roc_auc_score(y_valid, val_predictions) # Print the AUC score print(f"Validation AUC: {val_auc}") # Predict on the test set test_predictions = model.predict_proba(X_test_final)[:, 1] # Save the predictions to a CSV file output = pd.DataFrame({"id": test_data.id, "target": test_predictions}) output.to_csv("./working/submission.csv", index=False)