|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.metrics import accuracy_score |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
X = train_data.drop(columns=["Id", "Cover_Type"]) |
|
y = train_data["Cover_Type"] |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
model = RandomForestClassifier(random_state=42) |
|
model.fit(X_train, y_train) |
|
|
|
|
|
val_predictions = model.predict(X_val) |
|
accuracy = accuracy_score(y_val, val_predictions) |
|
print(f"Validation Accuracy: {accuracy}") |
|
|
|
|
|
test_predictions = model.predict(test_data.drop(columns=["Id"])) |
|
|
|
|
|
submission = pd.DataFrame({"Id": test_data["Id"], "Cover_Type": test_predictions}) |
|
submission.to_csv("./working/submission.csv", index=False) |
|
|