import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Separate features and target X = train_data.drop(columns=["Id", "Cover_Type"]) y = train_data["Cover_Type"] # Split the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize and train the Random Forest Classifier model = RandomForestClassifier(random_state=42) model.fit(X_train, y_train) # Predict on the validation set and calculate accuracy val_predictions = model.predict(X_val) accuracy = accuracy_score(y_val, val_predictions) print(f"Validation Accuracy: {accuracy}") # Predict on the test set test_predictions = model.predict(test_data.drop(columns=["Id"])) # Save the predictions to a CSV file submission = pd.DataFrame({"Id": test_data["Id"], "Cover_Type": test_predictions}) submission.to_csv("./working/submission.csv", index=False)