|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.ensemble import GradientBoostingRegressor |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.metrics import mean_squared_error |
|
import numpy as np |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
X = train_data.drop(["id", "loss"], axis=1) |
|
y = train_data["loss"] |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
scaler = StandardScaler() |
|
X_train_scaled = scaler.fit_transform(X_train) |
|
X_val_scaled = scaler.transform(X_val) |
|
|
|
|
|
model = GradientBoostingRegressor(random_state=42) |
|
|
|
|
|
model.fit(X_train_scaled, y_train) |
|
|
|
|
|
y_pred = model.predict(X_val_scaled) |
|
|
|
|
|
rmse = np.sqrt(mean_squared_error(y_val, y_pred)) |
|
print(f"Validation RMSE: {rmse}") |
|
|
|
|
|
X_test = test_data.drop("id", axis=1) |
|
X_test_scaled = scaler.transform(X_test) |
|
|
|
|
|
test_predictions = model.predict(X_test_scaled) |
|
|
|
|
|
submission = pd.DataFrame({"id": test_data["id"], "loss": test_predictions}) |
|
submission.to_csv("./working/submission.csv", index=False) |
|
|