import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import GradientBoostingRegressor from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error import numpy as np # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Separate features and target X = train_data.drop(["id", "loss"], axis=1) y = train_data["loss"] # Split the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) # Scale the features scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_val_scaled = scaler.transform(X_val) # Initialize the model model = GradientBoostingRegressor(random_state=42) # Fit the model model.fit(X_train_scaled, y_train) # Predict on the validation set y_pred = model.predict(X_val_scaled) # Calculate the RMSE rmse = np.sqrt(mean_squared_error(y_val, y_pred)) print(f"Validation RMSE: {rmse}") # Prepare the test set X_test = test_data.drop("id", axis=1) X_test_scaled = scaler.transform(X_test) # Predict on the test set test_predictions = model.predict(X_test_scaled) # Create the submission file submission = pd.DataFrame({"id": test_data["id"], "loss": test_predictions}) submission.to_csv("./working/submission.csv", index=False)