|
import pandas as pd |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.metrics import roc_auc_score |
|
from sklearn.model_selection import train_test_split |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
train_labels = pd.read_csv("./input/train_labels.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
agg_funcs = ["mean", "std", "min", "max"] |
|
train_features = train_data.groupby("sequence").agg(agg_funcs) |
|
test_features = test_data.groupby("sequence").agg(agg_funcs) |
|
|
|
|
|
train_features.columns = [ |
|
"_".join(col).strip() for col in train_features.columns.values |
|
] |
|
test_features.columns = ["_".join(col).strip() for col in test_features.columns.values] |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split( |
|
train_features, train_labels["state"], test_size=0.2, random_state=42 |
|
) |
|
|
|
|
|
rf = RandomForestClassifier(n_estimators=100, random_state=42) |
|
rf.fit(X_train, y_train) |
|
|
|
|
|
val_probs = rf.predict_proba(X_val)[:, 1] |
|
|
|
|
|
auc_score = roc_auc_score(y_val, val_probs) |
|
print(f"AUC-ROC score: {auc_score}") |
|
|
|
|
|
test_probs = rf.predict_proba(test_features)[:, 1] |
|
|
|
|
|
submission = pd.DataFrame({"sequence": test_features.index, "state": test_probs}) |
|
submission.to_csv("./working/submission.csv", index=False) |
|
|