import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score from sklearn.model_selection import train_test_split # Load the data train_data = pd.read_csv("./input/train.csv") train_labels = pd.read_csv("./input/train_labels.csv") test_data = pd.read_csv("./input/test.csv") # Aggregate features for each sequence agg_funcs = ["mean", "std", "min", "max"] train_features = train_data.groupby("sequence").agg(agg_funcs) test_features = test_data.groupby("sequence").agg(agg_funcs) # Flatten multi-level columns train_features.columns = [ "_".join(col).strip() for col in train_features.columns.values ] test_features.columns = ["_".join(col).strip() for col in test_features.columns.values] # Split the data into train and validation sets X_train, X_val, y_train, y_val = train_test_split( train_features, train_labels["state"], test_size=0.2, random_state=42 ) # Initialize and train the Random Forest classifier rf = RandomForestClassifier(n_estimators=100, random_state=42) rf.fit(X_train, y_train) # Predict probabilities for the validation set val_probs = rf.predict_proba(X_val)[:, 1] # Calculate the AUC-ROC score auc_score = roc_auc_score(y_val, val_probs) print(f"AUC-ROC score: {auc_score}") # Predict probabilities for the test set test_probs = rf.predict_proba(test_features)[:, 1] # Create the submission file submission = pd.DataFrame({"sequence": test_features.index, "state": test_probs}) submission.to_csv("./working/submission.csv", index=False)