|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.metrics import accuracy_score |
|
from sklearn.impute import SimpleImputer |
|
from sklearn.preprocessing import OneHotEncoder |
|
from sklearn.compose import ColumnTransformer |
|
from sklearn.pipeline import Pipeline |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
y = train_data["Transported"] |
|
X = train_data.drop(["Transported"], axis=1) |
|
|
|
|
|
categorical_cols = [ |
|
cname |
|
for cname in X.columns |
|
if X[cname].nunique() < 10 and X[cname].dtype == "object" |
|
] |
|
|
|
|
|
numerical_cols = [ |
|
cname for cname in X.columns if X[cname].dtype in ["int64", "float64"] |
|
] |
|
|
|
|
|
numerical_transformer = SimpleImputer(strategy="median") |
|
|
|
|
|
categorical_transformer = Pipeline( |
|
steps=[ |
|
("imputer", SimpleImputer(strategy="most_frequent")), |
|
("onehot", OneHotEncoder(handle_unknown="ignore")), |
|
] |
|
) |
|
|
|
|
|
preprocessor = ColumnTransformer( |
|
transformers=[ |
|
("num", numerical_transformer, numerical_cols), |
|
("cat", categorical_transformer, categorical_cols), |
|
] |
|
) |
|
|
|
|
|
model = RandomForestClassifier(n_estimators=100, random_state=0) |
|
|
|
|
|
clf = Pipeline(steps=[("preprocessor", preprocessor), ("model", model)]) |
|
|
|
|
|
X_train, X_valid, y_train, y_valid = train_test_split( |
|
X, y, train_size=0.8, test_size=0.2, random_state=0 |
|
) |
|
|
|
|
|
clf.fit(X_train, y_train) |
|
|
|
|
|
preds = clf.predict(X_valid) |
|
|
|
|
|
score = accuracy_score(y_valid, preds) |
|
print("Accuracy:", score) |
|
|
|
|
|
preprocessed_test_data = clf.named_steps["preprocessor"].transform(test_data) |
|
|
|
|
|
test_preds = clf.named_steps["model"].predict(preprocessed_test_data) |
|
|
|
|
|
output = pd.DataFrame({"PassengerId": test_data.PassengerId, "Transported": test_preds}) |
|
output.to_csv("./working/submission.csv", index=False) |
|
|