import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Separate target from predictors y = train_data["Transported"] X = train_data.drop(["Transported"], axis=1) # Select categorical columns with relatively low cardinality categorical_cols = [ cname for cname in X.columns if X[cname].nunique() < 10 and X[cname].dtype == "object" ] # Select numerical columns numerical_cols = [ cname for cname in X.columns if X[cname].dtype in ["int64", "float64"] ] # Preprocessing for numerical data numerical_transformer = SimpleImputer(strategy="median") # Preprocessing for categorical data categorical_transformer = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="most_frequent")), ("onehot", OneHotEncoder(handle_unknown="ignore")), ] ) # Bundle preprocessing for numerical and categorical data preprocessor = ColumnTransformer( transformers=[ ("num", numerical_transformer, numerical_cols), ("cat", categorical_transformer, categorical_cols), ] ) # Define the model model = RandomForestClassifier(n_estimators=100, random_state=0) # Bundle preprocessing and modeling code in a pipeline clf = Pipeline(steps=[("preprocessor", preprocessor), ("model", model)]) # Split data into train and validation sets X_train, X_valid, y_train, y_valid = train_test_split( X, y, train_size=0.8, test_size=0.2, random_state=0 ) # Preprocessing of training data, fit model clf.fit(X_train, y_train) # Preprocessing of validation data, get predictions preds = clf.predict(X_valid) # Evaluate the model score = accuracy_score(y_valid, preds) print("Accuracy:", score) # Preprocessing of test data, fit model preprocessed_test_data = clf.named_steps["preprocessor"].transform(test_data) # Get test predictions test_preds = clf.named_steps["model"].predict(preprocessed_test_data) # Save test predictions to file output = pd.DataFrame({"PassengerId": test_data.PassengerId, "Transported": test_preds}) output.to_csv("./working/submission.csv", index=False)