|
import pandas as pd |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import accuracy_score |
|
|
|
|
|
train_data = pd.read_csv("./input/train.tsv", sep="\t") |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split( |
|
train_data["Phrase"], train_data["Sentiment"], test_size=0.2, random_state=42 |
|
) |
|
|
|
|
|
tfidf_vectorizer = TfidfVectorizer(stop_words="english", ngram_range=(1, 2)) |
|
|
|
|
|
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train.astype(str)) |
|
|
|
|
|
X_val_tfidf = tfidf_vectorizer.transform(X_val.astype(str)) |
|
|
|
|
|
logistic_regression_model = LogisticRegression(random_state=42) |
|
|
|
|
|
logistic_regression_model.fit(X_train_tfidf, y_train) |
|
|
|
|
|
y_val_pred = logistic_regression_model.predict(X_val_tfidf) |
|
|
|
|
|
accuracy = accuracy_score(y_val, y_val_pred) |
|
print(f"Validation Accuracy: {accuracy}") |
|
|
|
|
|
test_data = pd.read_csv("./input/test.tsv", sep="\t") |
|
|
|
|
|
test_data["Phrase"] = test_data["Phrase"].fillna("") |
|
|
|
|
|
X_test_tfidf = tfidf_vectorizer.transform(test_data["Phrase"].astype(str)) |
|
|
|
|
|
test_predictions = logistic_regression_model.predict(X_test_tfidf) |
|
|
|
|
|
submission = pd.DataFrame( |
|
{"PhraseId": test_data["PhraseId"], "Sentiment": test_predictions} |
|
) |
|
|
|
|
|
submission.to_csv("./working/submission.csv", index=False) |
|
|