import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Load the training data train_data = pd.read_csv("./input/train.tsv", sep="\t") # Split the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split( train_data["Phrase"], train_data["Sentiment"], test_size=0.2, random_state=42 ) # Initialize a TF-IDF Vectorizer tfidf_vectorizer = TfidfVectorizer(stop_words="english", ngram_range=(1, 2)) # Fit and transform the training data X_train_tfidf = tfidf_vectorizer.fit_transform(X_train.astype(str)) # Transform the validation data X_val_tfidf = tfidf_vectorizer.transform(X_val.astype(str)) # Initialize the Logistic Regression model logistic_regression_model = LogisticRegression(random_state=42) # Train the model logistic_regression_model.fit(X_train_tfidf, y_train) # Predict the sentiments on the validation set y_val_pred = logistic_regression_model.predict(X_val_tfidf) # Calculate the accuracy on the validation set accuracy = accuracy_score(y_val, y_val_pred) print(f"Validation Accuracy: {accuracy}") # Load the test data test_data = pd.read_csv("./input/test.tsv", sep="\t") # Preprocess the test data by filling NaN values with an empty string test_data["Phrase"] = test_data["Phrase"].fillna("") # Transform the test data using the same vectorizer X_test_tfidf = tfidf_vectorizer.transform(test_data["Phrase"].astype(str)) # Predict the sentiments on the test set test_predictions = logistic_regression_model.predict(X_test_tfidf) # Prepare the submission file submission = pd.DataFrame( {"PhraseId": test_data["PhraseId"], "Sentiment": test_predictions} ) # Save the submission file submission.to_csv("./working/submission.csv", index=False)