|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.metrics import roc_auc_score |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
X = train_data.drop(["id", "booking_status"], axis=1) |
|
y = train_data["booking_status"] |
|
X_test = test_data.drop("id", axis=1) |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
model = LogisticRegression(max_iter=1000, random_state=42) |
|
model.fit(X_train, y_train) |
|
|
|
|
|
val_predictions = model.predict_proba(X_val)[:, 1] |
|
val_roc_auc = roc_auc_score(y_val, val_predictions) |
|
print(f"Validation ROC AUC: {val_roc_auc}") |
|
|
|
|
|
model.fit(X, y) |
|
test_predictions = model.predict_proba(X_test)[:, 1] |
|
|
|
|
|
submission = pd.DataFrame({"id": test_data["id"], "booking_status": test_predictions}) |
|
submission.to_csv("./working/submission.csv", index=False) |
|
|