import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Prepare the data X = train_data.drop(["id", "booking_status"], axis=1) y = train_data["booking_status"] X_test = test_data.drop("id", axis=1) # Split the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize and train the logistic regression model model = LogisticRegression(max_iter=1000, random_state=42) model.fit(X_train, y_train) # Predict on the validation set val_predictions = model.predict_proba(X_val)[:, 1] val_roc_auc = roc_auc_score(y_val, val_predictions) print(f"Validation ROC AUC: {val_roc_auc}") # Train the model on the full training data and predict on the test set model.fit(X, y) test_predictions = model.predict_proba(X_test)[:, 1] # Save the predictions in the submission format submission = pd.DataFrame({"id": test_data["id"], "booking_status": test_predictions}) submission.to_csv("./working/submission.csv", index=False)