|
import pandas as pd |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import log_loss |
|
from sklearn.preprocessing import OneHotEncoder, StandardScaler |
|
from sklearn.compose import ColumnTransformer |
|
from sklearn.pipeline import Pipeline |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
X = train_data.drop(["Status", "id"], axis=1) |
|
y = train_data["Status"] |
|
X_test = test_data.drop("id", axis=1) |
|
|
|
|
|
numerical_transformer = StandardScaler() |
|
|
|
|
|
categorical_transformer = OneHotEncoder(handle_unknown="ignore") |
|
|
|
|
|
preprocessor = ColumnTransformer( |
|
transformers=[ |
|
("num", numerical_transformer, X.select_dtypes(exclude=["object"]).columns), |
|
("cat", categorical_transformer, X.select_dtypes(include=["object"]).columns), |
|
] |
|
) |
|
|
|
|
|
model = RandomForestClassifier(n_estimators=100, random_state=0) |
|
|
|
|
|
clf = Pipeline(steps=[("preprocessor", preprocessor), ("model", model)]) |
|
|
|
|
|
X_train, X_valid, y_train, y_valid = train_test_split( |
|
X, y, train_size=0.8, test_size=0.2, random_state=0 |
|
) |
|
|
|
|
|
clf.fit(X_train, y_train) |
|
|
|
|
|
preds = clf.predict_proba(X_valid) |
|
|
|
|
|
score = log_loss(pd.get_dummies(y_valid), preds) |
|
print("Log Loss:", score) |
|
|
|
|
|
test_preds = clf.predict_proba(X_test) |
|
|
|
|
|
output = pd.DataFrame( |
|
{ |
|
"id": test_data.id, |
|
"Status_C": test_preds[:, 0], |
|
"Status_CL": test_preds[:, 1], |
|
"Status_D": test_preds[:, 2], |
|
} |
|
) |
|
output.to_csv("./working/submission.csv", index=False) |
|
|