import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import log_loss from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Separate features and target X = train_data.drop(["Status", "id"], axis=1) y = train_data["Status"] X_test = test_data.drop("id", axis=1) # Preprocessing for numerical data numerical_transformer = StandardScaler() # Preprocessing for categorical data categorical_transformer = OneHotEncoder(handle_unknown="ignore") # Bundle preprocessing for numerical and categorical data preprocessor = ColumnTransformer( transformers=[ ("num", numerical_transformer, X.select_dtypes(exclude=["object"]).columns), ("cat", categorical_transformer, X.select_dtypes(include=["object"]).columns), ] ) # Define the model model = RandomForestClassifier(n_estimators=100, random_state=0) # Bundle preprocessing and modeling code in a pipeline clf = Pipeline(steps=[("preprocessor", preprocessor), ("model", model)]) # Split data into train and validation sets X_train, X_valid, y_train, y_valid = train_test_split( X, y, train_size=0.8, test_size=0.2, random_state=0 ) # Preprocessing of training data, fit model clf.fit(X_train, y_train) # Preprocessing of validation data, get predictions preds = clf.predict_proba(X_valid) # Evaluate the model score = log_loss(pd.get_dummies(y_valid), preds) print("Log Loss:", score) # Preprocessing of test data, fit model test_preds = clf.predict_proba(X_test) # Generate submission file output = pd.DataFrame( { "id": test_data.id, "Status_C": test_preds[:, 0], "Status_CL": test_preds[:, 1], "Status_D": test_preds[:, 2], } ) output.to_csv("./working/submission.csv", index=False)