|
import pandas as pd |
|
import lightgbm as lgb |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import mean_squared_log_error |
|
import numpy as np |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
X = train_data.drop(["id", "cost"], axis=1) |
|
y = train_data["cost"] |
|
X_test = test_data.drop("id", axis=1) |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
model = lgb.LGBMRegressor(random_state=42) |
|
model.fit(X_train, y_train) |
|
|
|
|
|
y_pred = model.predict(X_val) |
|
y_pred_test = model.predict(X_test) |
|
|
|
|
|
rmsle = np.sqrt(mean_squared_log_error(y_val, y_pred)) |
|
print(f"Validation RMSLE: {rmsle}") |
|
|
|
|
|
submission = pd.DataFrame({"id": test_data["id"], "cost": y_pred_test}) |
|
submission.to_csv("./working/submission.csv", index=False) |
|
|