import pandas as pd import lightgbm as lgb from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_log_error import numpy as np # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Prepare the data X = train_data.drop(["id", "cost"], axis=1) y = train_data["cost"] X_test = test_data.drop("id", axis=1) # Split the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) # Train the model model = lgb.LGBMRegressor(random_state=42) model.fit(X_train, y_train) # Make predictions y_pred = model.predict(X_val) y_pred_test = model.predict(X_test) # Calculate the RMSLE rmsle = np.sqrt(mean_squared_log_error(y_val, y_pred)) print(f"Validation RMSLE: {rmsle}") # Prepare the submission file submission = pd.DataFrame({"id": test_data["id"], "cost": y_pred_test}) submission.to_csv("./working/submission.csv", index=False)