|
import lightgbm as lgb |
|
import pandas as pd |
|
from sklearn.model_selection import KFold |
|
from sklearn.metrics import mean_squared_error |
|
import numpy as np |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
sample_submission = pd.read_csv("./input/sample_submission.csv") |
|
|
|
|
|
X = train_data.drop(["MedHouseVal", "id"], axis=1) |
|
y = train_data["MedHouseVal"] |
|
X_test = test_data.drop("id", axis=1) |
|
|
|
|
|
kf = KFold(n_splits=10, shuffle=True, random_state=42) |
|
rmse_scores = [] |
|
|
|
|
|
for train_index, val_index in kf.split(X): |
|
X_train, X_val = X.iloc[train_index], X.iloc[val_index] |
|
y_train, y_val = y.iloc[train_index], y.iloc[val_index] |
|
|
|
|
|
train_set = lgb.Dataset(X_train, label=y_train) |
|
val_set = lgb.Dataset(X_val, label=y_val) |
|
|
|
|
|
params = {"objective": "regression", "metric": "rmse", "verbosity": -1} |
|
model = lgb.train( |
|
params, train_set, valid_sets=[train_set, val_set], verbose_eval=False |
|
) |
|
|
|
|
|
y_pred = model.predict(X_val, num_iteration=model.best_iteration) |
|
|
|
|
|
rmse = np.sqrt(mean_squared_error(y_val, y_pred)) |
|
rmse_scores.append(rmse) |
|
|
|
|
|
print(f"Average RMSE: {np.mean(rmse_scores)}") |
|
|
|
|
|
full_train_set = lgb.Dataset(X, label=y) |
|
final_model = lgb.train(params, full_train_set, verbose_eval=False) |
|
|
|
|
|
predictions = final_model.predict(X_test, num_iteration=final_model.best_iteration) |
|
|
|
|
|
submission = pd.DataFrame({"id": test_data["id"], "MedHouseVal": predictions}) |
|
submission.to_csv("./working/submission.csv", index=False) |
|
|