import lightgbm as lgb import pandas as pd from sklearn.model_selection import KFold from sklearn.metrics import mean_squared_error import numpy as np # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") sample_submission = pd.read_csv("./input/sample_submission.csv") # Prepare the data X = train_data.drop(["MedHouseVal", "id"], axis=1) y = train_data["MedHouseVal"] X_test = test_data.drop("id", axis=1) # Prepare cross-validation kf = KFold(n_splits=10, shuffle=True, random_state=42) rmse_scores = [] # Perform 10-fold cross-validation for train_index, val_index in kf.split(X): X_train, X_val = X.iloc[train_index], X.iloc[val_index] y_train, y_val = y.iloc[train_index], y.iloc[val_index] # Create LightGBM datasets train_set = lgb.Dataset(X_train, label=y_train) val_set = lgb.Dataset(X_val, label=y_val) # Train the model params = {"objective": "regression", "metric": "rmse", "verbosity": -1} model = lgb.train( params, train_set, valid_sets=[train_set, val_set], verbose_eval=False ) # Predict on validation set y_pred = model.predict(X_val, num_iteration=model.best_iteration) # Calculate RMSE rmse = np.sqrt(mean_squared_error(y_val, y_pred)) rmse_scores.append(rmse) # Print the average RMSE across the folds print(f"Average RMSE: {np.mean(rmse_scores)}") # Train the model on the full dataset full_train_set = lgb.Dataset(X, label=y) final_model = lgb.train(params, full_train_set, verbose_eval=False) # Predict on the test set predictions = final_model.predict(X_test, num_iteration=final_model.best_iteration) # Prepare the submission file submission = pd.DataFrame({"id": test_data["id"], "MedHouseVal": predictions}) submission.to_csv("./working/submission.csv", index=False)