|
import pandas as pd |
|
import numpy as np |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import roc_auc_score |
|
from lightgbm import LGBMClassifier |
|
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
y = train_data["target"] |
|
X = train_data.drop(["target", "id"], axis=1) |
|
X_test = test_data.drop("id", axis=1) |
|
|
|
|
|
binary_cols = [col for col in X.columns if "bin" in col] |
|
ordinal_cols = [col for col in X.columns if "ord" in col] |
|
nominal_cols = [col for col in X.columns if "nom" in col] |
|
cyclical_cols = ["day", "month"] |
|
|
|
|
|
ordinal_encoder = OrdinalEncoder() |
|
X[binary_cols + ordinal_cols] = ordinal_encoder.fit_transform( |
|
X[binary_cols + ordinal_cols] |
|
) |
|
X_test[binary_cols + ordinal_cols] = ordinal_encoder.transform( |
|
X_test[binary_cols + ordinal_cols] |
|
) |
|
|
|
|
|
low_cardinality_nom_cols = [col for col in nominal_cols if X[col].nunique() < 10] |
|
one_hot_encoder = OneHotEncoder(handle_unknown="ignore", sparse=False) |
|
X_low_card_nom = pd.DataFrame( |
|
one_hot_encoder.fit_transform(X[low_cardinality_nom_cols]) |
|
) |
|
X_test_low_card_nom = pd.DataFrame( |
|
one_hot_encoder.transform(X_test[low_cardinality_nom_cols]) |
|
) |
|
|
|
|
|
high_cardinality_nom_cols = [col for col in nominal_cols if X[col].nunique() >= 10] |
|
for col in high_cardinality_nom_cols: |
|
freq_encoder = X[col].value_counts(normalize=True) |
|
X[col] = X[col].map(freq_encoder) |
|
X_test[col] = X_test[col].map(freq_encoder) |
|
|
|
|
|
X = pd.concat([X, X_low_card_nom], axis=1).drop(low_cardinality_nom_cols, axis=1) |
|
X_test = pd.concat([X_test, X_test_low_card_nom], axis=1).drop( |
|
low_cardinality_nom_cols, axis=1 |
|
) |
|
|
|
|
|
X_train, X_valid, y_train, y_valid = train_test_split( |
|
X, y, train_size=0.8, test_size=0.2, random_state=0 |
|
) |
|
|
|
|
|
model = LGBMClassifier() |
|
|
|
|
|
model.fit(X_train, y_train) |
|
|
|
|
|
valid_preds = model.predict_proba(X_valid)[:, 1] |
|
|
|
|
|
roc_auc = roc_auc_score(y_valid, valid_preds) |
|
print(f"Validation ROC AUC Score: {roc_auc}") |
|
|
|
|
|
test_preds = model.predict_proba(X_test)[:, 1] |
|
|
|
|
|
output = pd.DataFrame({"id": test_data.id, "target": test_preds}) |
|
output.to_csv("./working/submission.csv", index=False) |
|
|