File size: 2,645 Bytes
5cbc1e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
from lightgbm import LGBMClassifier
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder
# Load the data
train_data = pd.read_csv("./input/train.csv")
test_data = pd.read_csv("./input/test.csv")
# Separate target from predictors
y = train_data["target"]
X = train_data.drop(["target", "id"], axis=1)
X_test = test_data.drop("id", axis=1)
# List of columns by type
binary_cols = [col for col in X.columns if "bin" in col]
ordinal_cols = [col for col in X.columns if "ord" in col]
nominal_cols = [col for col in X.columns if "nom" in col]
cyclical_cols = ["day", "month"]
# Ordinal encoding for binary and ordinal features
ordinal_encoder = OrdinalEncoder()
X[binary_cols + ordinal_cols] = ordinal_encoder.fit_transform(
X[binary_cols + ordinal_cols]
)
X_test[binary_cols + ordinal_cols] = ordinal_encoder.transform(
X_test[binary_cols + ordinal_cols]
)
# One-hot encoding for nominal features with low cardinality
low_cardinality_nom_cols = [col for col in nominal_cols if X[col].nunique() < 10]
one_hot_encoder = OneHotEncoder(handle_unknown="ignore", sparse=False)
X_low_card_nom = pd.DataFrame(
one_hot_encoder.fit_transform(X[low_cardinality_nom_cols])
)
X_test_low_card_nom = pd.DataFrame(
one_hot_encoder.transform(X_test[low_cardinality_nom_cols])
)
# Frequency encoding for nominal features with high cardinality
high_cardinality_nom_cols = [col for col in nominal_cols if X[col].nunique() >= 10]
for col in high_cardinality_nom_cols:
freq_encoder = X[col].value_counts(normalize=True)
X[col] = X[col].map(freq_encoder)
X_test[col] = X_test[col].map(freq_encoder)
# Combine all features
X = pd.concat([X, X_low_card_nom], axis=1).drop(low_cardinality_nom_cols, axis=1)
X_test = pd.concat([X_test, X_test_low_card_nom], axis=1).drop(
low_cardinality_nom_cols, axis=1
)
# Split the data into training and validation sets
X_train, X_valid, y_train, y_valid = train_test_split(
X, y, train_size=0.8, test_size=0.2, random_state=0
)
# Define the model
model = LGBMClassifier()
# Train the model
model.fit(X_train, y_train)
# Predict on the validation set
valid_preds = model.predict_proba(X_valid)[:, 1]
# Evaluate the model
roc_auc = roc_auc_score(y_valid, valid_preds)
print(f"Validation ROC AUC Score: {roc_auc}")
# Predict on the test set
test_preds = model.predict_proba(X_test)[:, 1]
# Save the predictions to a CSV file
output = pd.DataFrame({"id": test_data.id, "target": test_preds})
output.to_csv("./working/submission.csv", index=False)
|