Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR) | |
Copyright(c) 2023 lyuwenyu. All Rights Reserved. | |
""" | |
import torch | |
import torch.nn as nn | |
class ConvNormLayer(nn.Module): | |
def __init__(self, ch_in, ch_out, kernel_size, stride, padding=None, bias=False, act=None): | |
super().__init__() | |
self.conv = nn.Conv2d( | |
ch_in, | |
ch_out, | |
kernel_size, | |
stride, | |
padding=(kernel_size - 1) // 2 if padding is None else padding, | |
bias=bias, | |
) | |
self.norm = nn.BatchNorm2d(ch_out) | |
self.act = nn.Identity() if act is None else get_activation(act) | |
def forward(self, x): | |
return self.act(self.norm(self.conv(x))) | |
class FrozenBatchNorm2d(nn.Module): | |
"""copy and modified from https://github.com/facebookresearch/detr/blob/master/models/backbone.py | |
BatchNorm2d where the batch statistics and the affine parameters are fixed. | |
Copy-paste from torchvision.misc.ops with added eps before rqsrt, | |
without which any other models than torchvision.models.resnet[18,34,50,101] | |
produce nans. | |
""" | |
def __init__(self, num_features, eps=1e-5): | |
super(FrozenBatchNorm2d, self).__init__() | |
n = num_features | |
self.register_buffer("weight", torch.ones(n)) | |
self.register_buffer("bias", torch.zeros(n)) | |
self.register_buffer("running_mean", torch.zeros(n)) | |
self.register_buffer("running_var", torch.ones(n)) | |
self.eps = eps | |
self.num_features = n | |
def _load_from_state_dict( | |
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs | |
): | |
num_batches_tracked_key = prefix + "num_batches_tracked" | |
if num_batches_tracked_key in state_dict: | |
del state_dict[num_batches_tracked_key] | |
super(FrozenBatchNorm2d, self)._load_from_state_dict( | |
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs | |
) | |
def forward(self, x): | |
# move reshapes to the beginning | |
# to make it fuser-friendly | |
w = self.weight.reshape(1, -1, 1, 1) | |
b = self.bias.reshape(1, -1, 1, 1) | |
rv = self.running_var.reshape(1, -1, 1, 1) | |
rm = self.running_mean.reshape(1, -1, 1, 1) | |
scale = w * (rv + self.eps).rsqrt() | |
bias = b - rm * scale | |
return x * scale + bias | |
def extra_repr(self): | |
return "{num_features}, eps={eps}".format(**self.__dict__) | |
def freeze_batch_norm2d(module: nn.Module) -> nn.Module: | |
if isinstance(module, nn.BatchNorm2d): | |
module = FrozenBatchNorm2d(module.num_features) | |
else: | |
for name, child in module.named_children(): | |
_child = freeze_batch_norm2d(child) | |
if _child is not child: | |
setattr(module, name, _child) | |
return module | |
def get_activation(act: str, inplace: bool = True): | |
"""get activation""" | |
if act is None: | |
return nn.Identity() | |
elif isinstance(act, nn.Module): | |
return act | |
act = act.lower() | |
if act == "silu" or act == "swish": | |
m = nn.SiLU() | |
elif act == "relu": | |
m = nn.ReLU() | |
elif act == "leaky_relu": | |
m = nn.LeakyReLU() | |
elif act == "silu": | |
m = nn.SiLU() | |
elif act == "gelu": | |
m = nn.GELU() | |
elif act == "hardsigmoid": | |
m = nn.Hardsigmoid() | |
else: | |
raise RuntimeError("") | |
if hasattr(m, "inplace"): | |
m.inplace = inplace | |
return m | |