""" Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR) Copyright(c) 2023 lyuwenyu. All Rights Reserved. """ import torch import torch.nn as nn class ConvNormLayer(nn.Module): def __init__(self, ch_in, ch_out, kernel_size, stride, padding=None, bias=False, act=None): super().__init__() self.conv = nn.Conv2d( ch_in, ch_out, kernel_size, stride, padding=(kernel_size - 1) // 2 if padding is None else padding, bias=bias, ) self.norm = nn.BatchNorm2d(ch_out) self.act = nn.Identity() if act is None else get_activation(act) def forward(self, x): return self.act(self.norm(self.conv(x))) class FrozenBatchNorm2d(nn.Module): """copy and modified from https://github.com/facebookresearch/detr/blob/master/models/backbone.py BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, num_features, eps=1e-5): super(FrozenBatchNorm2d, self).__init__() n = num_features self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) self.eps = eps self.num_features = n def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): num_batches_tracked_key = prefix + "num_batches_tracked" if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super(FrozenBatchNorm2d, self)._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ) def forward(self, x): # move reshapes to the beginning # to make it fuser-friendly w = self.weight.reshape(1, -1, 1, 1) b = self.bias.reshape(1, -1, 1, 1) rv = self.running_var.reshape(1, -1, 1, 1) rm = self.running_mean.reshape(1, -1, 1, 1) scale = w * (rv + self.eps).rsqrt() bias = b - rm * scale return x * scale + bias def extra_repr(self): return "{num_features}, eps={eps}".format(**self.__dict__) def freeze_batch_norm2d(module: nn.Module) -> nn.Module: if isinstance(module, nn.BatchNorm2d): module = FrozenBatchNorm2d(module.num_features) else: for name, child in module.named_children(): _child = freeze_batch_norm2d(child) if _child is not child: setattr(module, name, _child) return module def get_activation(act: str, inplace: bool = True): """get activation""" if act is None: return nn.Identity() elif isinstance(act, nn.Module): return act act = act.lower() if act == "silu" or act == "swish": m = nn.SiLU() elif act == "relu": m = nn.ReLU() elif act == "leaky_relu": m = nn.LeakyReLU() elif act == "silu": m = nn.SiLU() elif act == "gelu": m = nn.GELU() elif act == "hardsigmoid": m = nn.Hardsigmoid() else: raise RuntimeError("") if hasattr(m, "inplace"): m.inplace = inplace return m