D-FINE / src /misc /dist_utils.py
developer0hye's picture
Upload 76 files
e85fecb verified
"""
reference
- https://github.com/pytorch/vision/blob/main/references/detection/utils.py
- https://github.com/facebookresearch/detr/blob/master/util/misc.py#L406
Copyright(c) 2023 lyuwenyu. All Rights Reserved.
"""
import atexit
import os
import random
import time
import numpy as np
import torch
import torch.backends.cudnn
import torch.distributed
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DataParallel as DP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DistributedSampler
# from torch.utils.data.dataloader import DataLoader
from ..data import DataLoader
def setup_distributed(
print_rank: int = 0,
print_method: str = "builtin",
seed: int = None,
):
"""
env setup
args:
print_rank,
print_method, (builtin, rich)
seed,
"""
try:
# https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv("RANK", -1))
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1))
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
# torch.distributed.init_process_group(backend=backend, init_method='env://')
torch.distributed.init_process_group(init_method="env://")
torch.distributed.barrier()
rank = torch.distributed.get_rank()
torch.cuda.set_device(rank)
torch.cuda.empty_cache()
enabled_dist = True
if get_rank() == print_rank:
print("Initialized distributed mode...")
except Exception:
enabled_dist = False
print("Not init distributed mode.")
setup_print(get_rank() == print_rank, method=print_method)
if seed is not None:
setup_seed(seed)
return enabled_dist
def setup_print(is_main, method="builtin"):
"""This function disables printing when not in master process"""
import builtins as __builtin__
if method == "builtin":
builtin_print = __builtin__.print
elif method == "rich":
import rich
builtin_print = rich.print
else:
raise AttributeError("")
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_main or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_available_and_initialized():
if not torch.distributed.is_available():
return False
if not torch.distributed.is_initialized():
return False
return True
@atexit.register
def cleanup():
"""cleanup distributed environment"""
if is_dist_available_and_initialized():
torch.distributed.barrier()
torch.distributed.destroy_process_group()
def get_rank():
if not is_dist_available_and_initialized():
return 0
return torch.distributed.get_rank()
def get_world_size():
if not is_dist_available_and_initialized():
return 1
return torch.distributed.get_world_size()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def warp_model(
model: torch.nn.Module,
sync_bn: bool = False,
dist_mode: str = "ddp",
find_unused_parameters: bool = False,
compile: bool = False,
compile_mode: str = "reduce-overhead",
**kwargs,
):
if is_dist_available_and_initialized():
rank = get_rank()
model = nn.SyncBatchNorm.convert_sync_batchnorm(model) if sync_bn else model
if dist_mode == "dp":
model = DP(model, device_ids=[rank], output_device=rank)
elif dist_mode == "ddp":
model = DDP(
model,
device_ids=[rank],
output_device=rank,
find_unused_parameters=find_unused_parameters,
)
else:
raise AttributeError("")
if compile:
model = torch.compile(model, mode=compile_mode)
return model
def de_model(model):
return de_parallel(de_complie(model))
def warp_loader(loader, shuffle=False):
if is_dist_available_and_initialized():
sampler = DistributedSampler(loader.dataset, shuffle=shuffle)
loader = DataLoader(
loader.dataset,
loader.batch_size,
sampler=sampler,
drop_last=loader.drop_last,
collate_fn=loader.collate_fn,
pin_memory=loader.pin_memory,
num_workers=loader.num_workers,
)
return loader
def is_parallel(model) -> bool:
# Returns True if model is of type DP or DDP
return type(model) in (
torch.nn.parallel.DataParallel,
torch.nn.parallel.DistributedDataParallel,
)
def de_parallel(model) -> nn.Module:
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
return model.module if is_parallel(model) else model
def reduce_dict(data, avg=True):
"""
Args
data dict: input, {k: v, ...}
avg bool: true
"""
world_size = get_world_size()
if world_size < 2:
return data
with torch.no_grad():
keys, values = [], []
for k in sorted(data.keys()):
keys.append(k)
values.append(data[k])
values = torch.stack(values, dim=0)
torch.distributed.all_reduce(values)
if avg is True:
values /= world_size
return {k: v for k, v in zip(keys, values)}
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
data_list = [None] * world_size
torch.distributed.all_gather_object(data_list, data)
return data_list
def sync_time():
"""sync_time"""
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
def setup_seed(seed: int, deterministic=False):
"""setup_seed for reproducibility
torch.manual_seed(3407) is all you need. https://arxiv.org/abs/2109.08203
"""
seed = seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
# memory will be large when setting deterministic to True
if torch.backends.cudnn.is_available() and deterministic:
torch.backends.cudnn.deterministic = True
# for torch.compile
def check_compile():
import warnings
import torch
gpu_ok = False
if torch.cuda.is_available():
device_cap = torch.cuda.get_device_capability()
if device_cap in ((7, 0), (8, 0), (9, 0)):
gpu_ok = True
if not gpu_ok:
warnings.warn(
"GPU is not NVIDIA V100, A100, or H100. Speedup numbers may be lower " "than expected."
)
return gpu_ok
def is_compile(model):
import torch._dynamo
return type(model) in (torch._dynamo.OptimizedModule,)
def de_complie(model):
return model._orig_mod if is_compile(model) else model