Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,448 Bytes
e85fecb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
"""
reference
- https://github.com/pytorch/vision/blob/main/references/detection/utils.py
- https://github.com/facebookresearch/detr/blob/master/util/misc.py#L406
Copyright(c) 2023 lyuwenyu. All Rights Reserved.
"""
import atexit
import os
import random
import time
import numpy as np
import torch
import torch.backends.cudnn
import torch.distributed
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DataParallel as DP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DistributedSampler
# from torch.utils.data.dataloader import DataLoader
from ..data import DataLoader
def setup_distributed(
print_rank: int = 0,
print_method: str = "builtin",
seed: int = None,
):
"""
env setup
args:
print_rank,
print_method, (builtin, rich)
seed,
"""
try:
# https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv("RANK", -1))
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1))
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
# torch.distributed.init_process_group(backend=backend, init_method='env://')
torch.distributed.init_process_group(init_method="env://")
torch.distributed.barrier()
rank = torch.distributed.get_rank()
torch.cuda.set_device(rank)
torch.cuda.empty_cache()
enabled_dist = True
if get_rank() == print_rank:
print("Initialized distributed mode...")
except Exception:
enabled_dist = False
print("Not init distributed mode.")
setup_print(get_rank() == print_rank, method=print_method)
if seed is not None:
setup_seed(seed)
return enabled_dist
def setup_print(is_main, method="builtin"):
"""This function disables printing when not in master process"""
import builtins as __builtin__
if method == "builtin":
builtin_print = __builtin__.print
elif method == "rich":
import rich
builtin_print = rich.print
else:
raise AttributeError("")
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_main or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_available_and_initialized():
if not torch.distributed.is_available():
return False
if not torch.distributed.is_initialized():
return False
return True
@atexit.register
def cleanup():
"""cleanup distributed environment"""
if is_dist_available_and_initialized():
torch.distributed.barrier()
torch.distributed.destroy_process_group()
def get_rank():
if not is_dist_available_and_initialized():
return 0
return torch.distributed.get_rank()
def get_world_size():
if not is_dist_available_and_initialized():
return 1
return torch.distributed.get_world_size()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def warp_model(
model: torch.nn.Module,
sync_bn: bool = False,
dist_mode: str = "ddp",
find_unused_parameters: bool = False,
compile: bool = False,
compile_mode: str = "reduce-overhead",
**kwargs,
):
if is_dist_available_and_initialized():
rank = get_rank()
model = nn.SyncBatchNorm.convert_sync_batchnorm(model) if sync_bn else model
if dist_mode == "dp":
model = DP(model, device_ids=[rank], output_device=rank)
elif dist_mode == "ddp":
model = DDP(
model,
device_ids=[rank],
output_device=rank,
find_unused_parameters=find_unused_parameters,
)
else:
raise AttributeError("")
if compile:
model = torch.compile(model, mode=compile_mode)
return model
def de_model(model):
return de_parallel(de_complie(model))
def warp_loader(loader, shuffle=False):
if is_dist_available_and_initialized():
sampler = DistributedSampler(loader.dataset, shuffle=shuffle)
loader = DataLoader(
loader.dataset,
loader.batch_size,
sampler=sampler,
drop_last=loader.drop_last,
collate_fn=loader.collate_fn,
pin_memory=loader.pin_memory,
num_workers=loader.num_workers,
)
return loader
def is_parallel(model) -> bool:
# Returns True if model is of type DP or DDP
return type(model) in (
torch.nn.parallel.DataParallel,
torch.nn.parallel.DistributedDataParallel,
)
def de_parallel(model) -> nn.Module:
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
return model.module if is_parallel(model) else model
def reduce_dict(data, avg=True):
"""
Args
data dict: input, {k: v, ...}
avg bool: true
"""
world_size = get_world_size()
if world_size < 2:
return data
with torch.no_grad():
keys, values = [], []
for k in sorted(data.keys()):
keys.append(k)
values.append(data[k])
values = torch.stack(values, dim=0)
torch.distributed.all_reduce(values)
if avg is True:
values /= world_size
return {k: v for k, v in zip(keys, values)}
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
data_list = [None] * world_size
torch.distributed.all_gather_object(data_list, data)
return data_list
def sync_time():
"""sync_time"""
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
def setup_seed(seed: int, deterministic=False):
"""setup_seed for reproducibility
torch.manual_seed(3407) is all you need. https://arxiv.org/abs/2109.08203
"""
seed = seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
# memory will be large when setting deterministic to True
if torch.backends.cudnn.is_available() and deterministic:
torch.backends.cudnn.deterministic = True
# for torch.compile
def check_compile():
import warnings
import torch
gpu_ok = False
if torch.cuda.is_available():
device_cap = torch.cuda.get_device_capability()
if device_cap in ((7, 0), (8, 0), (9, 0)):
gpu_ok = True
if not gpu_ok:
warnings.warn(
"GPU is not NVIDIA V100, A100, or H100. Speedup numbers may be lower " "than expected."
)
return gpu_ok
def is_compile(model):
import torch._dynamo
return type(model) in (torch._dynamo.OptimizedModule,)
def de_complie(model):
return model._orig_mod if is_compile(model) else model
|