File size: 7,448 Bytes
e85fecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""

reference

- https://github.com/pytorch/vision/blob/main/references/detection/utils.py

- https://github.com/facebookresearch/detr/blob/master/util/misc.py#L406



Copyright(c) 2023 lyuwenyu. All Rights Reserved.

"""

import atexit
import os
import random
import time

import numpy as np
import torch
import torch.backends.cudnn
import torch.distributed
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DataParallel as DP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DistributedSampler

# from torch.utils.data.dataloader import DataLoader
from ..data import DataLoader


def setup_distributed(

    print_rank: int = 0,

    print_method: str = "builtin",

    seed: int = None,

):
    """

    env setup

    args:

        print_rank,

        print_method, (builtin, rich)

        seed,

    """
    try:
        # https://pytorch.org/docs/stable/elastic/run.html
        RANK = int(os.getenv("RANK", -1))
        LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1))
        WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))

        # torch.distributed.init_process_group(backend=backend, init_method='env://')
        torch.distributed.init_process_group(init_method="env://")
        torch.distributed.barrier()

        rank = torch.distributed.get_rank()
        torch.cuda.set_device(rank)
        torch.cuda.empty_cache()
        enabled_dist = True
        if get_rank() == print_rank:
            print("Initialized distributed mode...")

    except Exception:
        enabled_dist = False
        print("Not init distributed mode.")

    setup_print(get_rank() == print_rank, method=print_method)
    if seed is not None:
        setup_seed(seed)

    return enabled_dist


def setup_print(is_main, method="builtin"):
    """This function disables printing when not in master process"""
    import builtins as __builtin__

    if method == "builtin":
        builtin_print = __builtin__.print

    elif method == "rich":
        import rich

        builtin_print = rich.print

    else:
        raise AttributeError("")

    def print(*args, **kwargs):
        force = kwargs.pop("force", False)
        if is_main or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_available_and_initialized():
    if not torch.distributed.is_available():
        return False
    if not torch.distributed.is_initialized():
        return False
    return True


@atexit.register
def cleanup():
    """cleanup distributed environment"""
    if is_dist_available_and_initialized():
        torch.distributed.barrier()
        torch.distributed.destroy_process_group()


def get_rank():
    if not is_dist_available_and_initialized():
        return 0
    return torch.distributed.get_rank()


def get_world_size():
    if not is_dist_available_and_initialized():
        return 1
    return torch.distributed.get_world_size()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)


def warp_model(

    model: torch.nn.Module,

    sync_bn: bool = False,

    dist_mode: str = "ddp",

    find_unused_parameters: bool = False,

    compile: bool = False,

    compile_mode: str = "reduce-overhead",

    **kwargs,

):
    if is_dist_available_and_initialized():
        rank = get_rank()
        model = nn.SyncBatchNorm.convert_sync_batchnorm(model) if sync_bn else model
        if dist_mode == "dp":
            model = DP(model, device_ids=[rank], output_device=rank)
        elif dist_mode == "ddp":
            model = DDP(
                model,
                device_ids=[rank],
                output_device=rank,
                find_unused_parameters=find_unused_parameters,
            )
        else:
            raise AttributeError("")

    if compile:
        model = torch.compile(model, mode=compile_mode)

    return model


def de_model(model):
    return de_parallel(de_complie(model))


def warp_loader(loader, shuffle=False):
    if is_dist_available_and_initialized():
        sampler = DistributedSampler(loader.dataset, shuffle=shuffle)
        loader = DataLoader(
            loader.dataset,
            loader.batch_size,
            sampler=sampler,
            drop_last=loader.drop_last,
            collate_fn=loader.collate_fn,
            pin_memory=loader.pin_memory,
            num_workers=loader.num_workers,
        )
    return loader


def is_parallel(model) -> bool:
    # Returns True if model is of type DP or DDP
    return type(model) in (
        torch.nn.parallel.DataParallel,
        torch.nn.parallel.DistributedDataParallel,
    )


def de_parallel(model) -> nn.Module:
    # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
    return model.module if is_parallel(model) else model


def reduce_dict(data, avg=True):
    """

    Args

        data dict: input, {k: v, ...}

        avg bool: true

    """
    world_size = get_world_size()
    if world_size < 2:
        return data

    with torch.no_grad():
        keys, values = [], []
        for k in sorted(data.keys()):
            keys.append(k)
            values.append(data[k])

        values = torch.stack(values, dim=0)
        torch.distributed.all_reduce(values)

        if avg is True:
            values /= world_size

        return {k: v for k, v in zip(keys, values)}


def all_gather(data):
    """

    Run all_gather on arbitrary picklable data (not necessarily tensors)

    Args:

        data: any picklable object

    Returns:

        list[data]: list of data gathered from each rank

    """
    world_size = get_world_size()
    if world_size == 1:
        return [data]
    data_list = [None] * world_size
    torch.distributed.all_gather_object(data_list, data)
    return data_list


def sync_time():
    """sync_time"""
    if torch.cuda.is_available():
        torch.cuda.synchronize()

    return time.time()


def setup_seed(seed: int, deterministic=False):
    """setup_seed for reproducibility

    torch.manual_seed(3407) is all you need. https://arxiv.org/abs/2109.08203

    """
    seed = seed + get_rank()
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)

    # memory will be large when setting deterministic to True
    if torch.backends.cudnn.is_available() and deterministic:
        torch.backends.cudnn.deterministic = True


# for torch.compile
def check_compile():
    import warnings

    import torch

    gpu_ok = False
    if torch.cuda.is_available():
        device_cap = torch.cuda.get_device_capability()
        if device_cap in ((7, 0), (8, 0), (9, 0)):
            gpu_ok = True
    if not gpu_ok:
        warnings.warn(
            "GPU is not NVIDIA V100, A100, or H100. Speedup numbers may be lower " "than expected."
        )
    return gpu_ok


def is_compile(model):
    import torch._dynamo

    return type(model) in (torch._dynamo.OptimizedModule,)


def de_complie(model):
    return model._orig_mod if is_compile(model) else model