Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR) | |
Copyright(c) 2023 lyuwenyu. All Rights Reserved. | |
""" | |
from typing import List, Tuple | |
import torch | |
import torchvision | |
from torch import Tensor | |
def generalized_box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor: | |
assert (boxes1[:, 2:] >= boxes1[:, :2]).all() | |
assert (boxes2[:, 2:] >= boxes2[:, :2]).all() | |
return torchvision.ops.generalized_box_iou(boxes1, boxes2) | |
# elementwise | |
def elementwise_box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor: | |
""" | |
Args: | |
boxes1, [N, 4] | |
boxes2, [N, 4] | |
Returns: | |
iou, [N, ] | |
union, [N, ] | |
""" | |
area1 = torchvision.ops.box_area(boxes1) # [N, ] | |
area2 = torchvision.ops.box_area(boxes2) # [N, ] | |
lt = torch.max(boxes1[:, :2], boxes2[:, :2]) # [N, 2] | |
rb = torch.min(boxes1[:, 2:], boxes2[:, 2:]) # [N, 2] | |
wh = (rb - lt).clamp(min=0) # [N, 2] | |
inter = wh[:, 0] * wh[:, 1] # [N, ] | |
union = area1 + area2 - inter | |
iou = inter / union | |
return iou, union | |
def elementwise_generalized_box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor: | |
""" | |
Args: | |
boxes1, [N, 4] with [x1, y1, x2, y2] | |
boxes2, [N, 4] with [x1, y1, x2, y2] | |
Returns: | |
giou, [N, ] | |
""" | |
assert (boxes1[:, 2:] >= boxes1[:, :2]).all() | |
assert (boxes2[:, 2:] >= boxes2[:, :2]).all() | |
iou, union = elementwise_box_iou(boxes1, boxes2) | |
lt = torch.min(boxes1[:, :2], boxes2[:, :2]) # [N, 2] | |
rb = torch.max(boxes1[:, 2:], boxes2[:, 2:]) # [N, 2] | |
wh = (rb - lt).clamp(min=0) # [N, 2] | |
area = wh[:, 0] * wh[:, 1] | |
return iou - (area - union) / area | |
def check_point_inside_box(points: Tensor, boxes: Tensor, eps=1e-9) -> Tensor: | |
""" | |
Args: | |
points, [K, 2], (x, y) | |
boxes, [N, 4], (x1, y1, y2, y2) | |
Returns: | |
Tensor (bool), [K, N] | |
""" | |
x, y = [p.unsqueeze(-1) for p in points.unbind(-1)] | |
x1, y1, x2, y2 = [x.unsqueeze(0) for x in boxes.unbind(-1)] | |
l = x - x1 | |
t = y - y1 | |
r = x2 - x | |
b = y2 - y | |
ltrb = torch.stack([l, t, r, b], dim=-1) | |
mask = ltrb.min(dim=-1).values > eps | |
return mask | |
def point_box_distance(points: Tensor, boxes: Tensor) -> Tensor: | |
""" | |
Args: | |
boxes, [N, 4], (x1, y1, x2, y2) | |
points, [N, 2], (x, y) | |
Returns: | |
Tensor (N, 4), (l, t, r, b) | |
""" | |
x1y1, x2y2 = torch.split(boxes, 2, dim=-1) | |
lt = points - x1y1 | |
rb = x2y2 - points | |
return torch.concat([lt, rb], dim=-1) | |
def point_distance_box(points: Tensor, distances: Tensor) -> Tensor: | |
""" | |
Args: | |
points (Tensor), [N, 2], (x, y) | |
distances (Tensor), [N, 4], (l, t, r, b) | |
Returns: | |
boxes (Tensor), (N, 4), (x1, y1, x2, y2) | |
""" | |
lt, rb = torch.split(distances, 2, dim=-1) | |
x1y1 = -lt + points | |
x2y2 = rb + points | |
boxes = torch.concat([x1y1, x2y2], dim=-1) | |
return boxes | |