File size: 3,014 Bytes
e85fecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
"""

Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)

Copyright(c) 2023 lyuwenyu. All Rights Reserved.

"""

from typing import List, Tuple

import torch
import torchvision
from torch import Tensor


def generalized_box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:
    assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
    assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
    return torchvision.ops.generalized_box_iou(boxes1, boxes2)


# elementwise
def elementwise_box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:
    """

    Args:

        boxes1, [N, 4]

        boxes2, [N, 4]

    Returns:

        iou, [N, ]

        union, [N, ]

    """
    area1 = torchvision.ops.box_area(boxes1)  # [N, ]
    area2 = torchvision.ops.box_area(boxes2)  # [N, ]
    lt = torch.max(boxes1[:, :2], boxes2[:, :2])  # [N, 2]
    rb = torch.min(boxes1[:, 2:], boxes2[:, 2:])  # [N, 2]
    wh = (rb - lt).clamp(min=0)  # [N, 2]
    inter = wh[:, 0] * wh[:, 1]  # [N, ]
    union = area1 + area2 - inter
    iou = inter / union
    return iou, union


def elementwise_generalized_box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:
    """

    Args:

        boxes1, [N, 4] with [x1, y1, x2, y2]

        boxes2, [N, 4] with [x1, y1, x2, y2]

    Returns:

        giou, [N, ]

    """
    assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
    assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
    iou, union = elementwise_box_iou(boxes1, boxes2)
    lt = torch.min(boxes1[:, :2], boxes2[:, :2])  # [N, 2]
    rb = torch.max(boxes1[:, 2:], boxes2[:, 2:])  # [N, 2]
    wh = (rb - lt).clamp(min=0)  # [N, 2]
    area = wh[:, 0] * wh[:, 1]
    return iou - (area - union) / area


def check_point_inside_box(points: Tensor, boxes: Tensor, eps=1e-9) -> Tensor:
    """

    Args:

        points, [K, 2], (x, y)

        boxes, [N, 4], (x1, y1, y2, y2)

    Returns:

        Tensor (bool), [K, N]

    """
    x, y = [p.unsqueeze(-1) for p in points.unbind(-1)]
    x1, y1, x2, y2 = [x.unsqueeze(0) for x in boxes.unbind(-1)]

    l = x - x1
    t = y - y1
    r = x2 - x
    b = y2 - y

    ltrb = torch.stack([l, t, r, b], dim=-1)
    mask = ltrb.min(dim=-1).values > eps

    return mask


def point_box_distance(points: Tensor, boxes: Tensor) -> Tensor:
    """

    Args:

        boxes, [N, 4], (x1, y1, x2, y2)

        points, [N, 2], (x, y)

    Returns:

        Tensor (N, 4), (l, t, r, b)

    """
    x1y1, x2y2 = torch.split(boxes, 2, dim=-1)
    lt = points - x1y1
    rb = x2y2 - points
    return torch.concat([lt, rb], dim=-1)


def point_distance_box(points: Tensor, distances: Tensor) -> Tensor:
    """

    Args:

        points (Tensor), [N, 2], (x, y)

        distances (Tensor), [N, 4], (l, t, r, b)

    Returns:

        boxes (Tensor),  (N, 4), (x1, y1, x2, y2)

    """
    lt, rb = torch.split(distances, 2, dim=-1)
    x1y1 = -lt + points
    x2y2 = rb + points
    boxes = torch.concat([x1y1, x2y2], dim=-1)
    return boxes