File size: 5,166 Bytes
d73c320
 
64170a0
4db9ce2
 
 
 
 
8582a8e
 
 
d6bd636
 
 
 
 
 
64170a0
d73c320
 
64170a0
 
 
 
 
 
 
 
d73c320
8582a8e
d73c320
 
8582a8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4db9ce2
 
 
d6bd636
4db9ce2
 
 
 
bd98692
 
 
4db9ce2
 
 
8582a8e
4db9ce2
 
68d1553
8582a8e
68d1553
8582a8e
68d1553
4db9ce2
4f473c9
4db9ce2
 
 
 
8582a8e
68d1553
4db9ce2
 
8582a8e
4db9ce2
 
8582a8e
 
4db9ce2
 
8582a8e
4db9ce2
 
8582a8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d73c320
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import json
import ast
import streamlit as st
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import re
import math
import logging

st.set_page_config(
    page_title="AI Article Detection by DEJAN",
    page_icon="🧠",
    layout="wide"
)

# --- Load heuristic weights from environment secrets, with JSON→Python fallback ---
@st.cache_resource
def load_heuristic_weights():
    def _load(env_key):
        raw = os.environ[env_key]
        try:
            return json.loads(raw)
        except json.JSONDecodeError:
            return ast.literal_eval(raw)
    ai = _load("AI_WEIGHTS_JSON")
    og = _load("OG_WEIGHTS_JSON")
    return ai, og

AI_WEIGHTS, OG_WEIGHTS = load_heuristic_weights()
SIGMOID_K = 0.5

def tokenize(text):
    return re.findall(r'\b[a-z]{2,}\b', text.lower())

def classify_text_likelihood(text: str) -> float:
    tokens = tokenize(text)
    if not tokens:
        return 0.5
    ai_score = og_score = matched = 0
    for t in tokens:
        aw = AI_WEIGHTS.get(t, 0)
        ow = OG_WEIGHTS.get(t, 0)
        if aw or ow:
            matched += 1
            ai_score += aw
            og_score += ow
    if matched == 0:
        return 0.5
    net = ai_score - og_score
    return 1 / (1 + math.exp(-SIGMOID_K * net))

def highlight_heuristic_words(text: str) -> str:
    parts = re.split(r'(\b[a-z]{2,}\b)', text)
    out = []
    for part in parts:
        lower = part.lower()
        if lower in AI_WEIGHTS:
            out.append(
                f"<span style='text-decoration: underline; "
                f"text-decoration-color: darkred; text-decoration-thickness: 2px;'>"
                f"{part}</span>"
            )
        elif lower in OG_WEIGHTS:
            out.append(
                f"<span style='text-decoration: underline; "
                f"text-decoration-color: darkgreen; text-decoration-thickness: 2px;'>"
                f"{part}</span>"
            )
        else:
            out.append(part)
    return ''.join(out)

# --- Logging & Streamlit setup ---
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)



st.markdown("""
<link href="https://fonts.googleapis.com/css2?family=Roboto&display=swap" rel="stylesheet">
<style>
    html, body, [class*="css"] {
        font-family: 'Roboto', sans-serif;
    }
</style>
""", unsafe_allow_html=True)

@st.cache_resource
def load_model_and_tokenizer(model_name):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    dtype = torch.bfloat16 if (device.type=="cuda" and torch.cuda.is_bf16_supported()) else torch.float32
    model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=dtype)
    model.to(device).eval()
    return tokenizer, model, device

MODEL_NAME = "dejanseo/ai-detection-small"
try:
    tokenizer, model, device = load_model_and_tokenizer(MODEL_NAME)
except Exception as e:
    st.error(f"Error loading model: {e}")
    logger.error(f"Failed to load model: {e}", exc_info=True)
    st.stop()

def sent_tokenize(text):
    return [s for s in re.split(r'(?<=[\.!?])\s+', text.strip()) if s]

st.title("AI Article Detection")

text = st.text_area("Enter text to classify", height=200, placeholder="Paste your text here…")

if st.button("Classify", type="primary"):
    if not text.strip():
        st.warning("Please enter some text.")
    else:
        with st.spinner("Analyzing…"):
            sentences = sent_tokenize(text)
            if not sentences:
                st.warning("No sentences detected.")
                st.stop()

            inputs = tokenizer(
                sentences,
                return_tensors="pt",
                padding=True,
                truncation=True,
                max_length=model.config.max_position_embeddings
            ).to(device)

            with torch.no_grad():
                logits = model(**inputs).logits
                probs = F.softmax(logits, dim=-1).cpu()
                preds = torch.argmax(probs, dim=-1).cpu()

            chunks = []
            for i, s in enumerate(sentences):
                inner = highlight_heuristic_words(s)
                p = preds[i].item()
                r, g = (255, 0) if p == 0 else (0, 255)
                conf = probs[i, p].item()
                alpha = conf
                span = (
                    f"<span style='background-color: rgba({r},{g},0,{alpha:.2f}); "
                    f"padding:2px; margin:0 2px; border-radius:3px;'>{inner}</span>"
                )
                chunks.append(span)
            st.markdown("".join(chunks), unsafe_allow_html=True)

            avg = torch.mean(probs, dim=0)
            model_ai = avg[0].item()
            heuristic_ai = classify_text_likelihood(text)
            combined = min(model_ai + heuristic_ai, 1.0)

            st.subheader(f"🤖 Model AI Likelihood: {model_ai*100:.1f}%")
            st.subheader(f"🛠️ Heuristic AI Likelihood: {heuristic_ai*100:.1f}%")
            st.subheader(f"⚖️ Combined AI Likelihood: {combined*100:.1f}%")