Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,9 @@ import torch
|
|
3 |
import torch.nn.functional as F
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
import re
|
6 |
-
import logging
|
7 |
|
8 |
-
# Set up logging
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
@@ -16,34 +16,38 @@ st.set_page_config(
|
|
16 |
layout="wide"
|
17 |
)
|
18 |
|
19 |
-
# Logo
|
20 |
-
st.
|
21 |
-
""
|
22 |
-
|
23 |
-
<img src="https://dejan.ai/wp-content/uploads/2024/02/dejan-300x103.png" alt="DEJAN logo">
|
24 |
-
</a>
|
25 |
-
""",
|
26 |
-
unsafe_allow_html=True
|
27 |
)
|
28 |
|
29 |
-
#
|
30 |
st.markdown("""
|
31 |
<link href="https://fonts.googleapis.com/css2?family=Roboto&display=swap" rel="stylesheet">
|
32 |
<style>
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
</style>
|
37 |
""", unsafe_allow_html=True)
|
38 |
|
39 |
-
@st.cache_resource
|
40 |
def load_model_and_tokenizer(model_name):
|
|
|
|
|
41 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
42 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
dtype = torch.bfloat16 if (device.type == "cuda" and torch.cuda.is_bf16_supported()) else torch.float32
|
|
|
|
|
|
|
44 |
model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=dtype)
|
45 |
model.to(device)
|
46 |
model.eval()
|
|
|
|
|
47 |
return tokenizer, model, device
|
48 |
|
49 |
MODEL_NAME = "dejanseo/ai-detection-small"
|
@@ -51,33 +55,33 @@ try:
|
|
51 |
tokenizer, model, device = load_model_and_tokenizer(MODEL_NAME)
|
52 |
except Exception as e:
|
53 |
st.error(f"Error loading model: {e}")
|
54 |
-
logger.error("Failed to load model or tokenizer", exc_info=True)
|
55 |
st.stop()
|
56 |
|
57 |
# Labels
|
58 |
LABELS = ["AI Content", "Human Content"]
|
59 |
|
60 |
-
#
|
61 |
def sent_tokenize(text):
|
62 |
sentences = re.split(r'(?<=[\.!?])\s+', text.strip())
|
63 |
return [s for s in sentences if s]
|
64 |
|
65 |
# UI
|
66 |
st.title("AI Article Detection")
|
67 |
-
text = st.text_area("Enter text to classify", height=200)
|
68 |
|
69 |
if st.button("Classify", type="primary"):
|
70 |
-
if not text.strip():
|
71 |
st.warning("Please enter some text.")
|
72 |
else:
|
73 |
-
with st.spinner("Analyzing..."):
|
74 |
try:
|
75 |
sentences = sent_tokenize(text)
|
76 |
if not sentences:
|
77 |
st.warning("No sentences detected.")
|
78 |
st.stop()
|
79 |
|
80 |
-
# Tokenize
|
81 |
inputs = tokenizer(
|
82 |
sentences,
|
83 |
return_tensors="pt",
|
@@ -90,21 +94,17 @@ if st.button("Classify", type="primary"):
|
|
90 |
with torch.no_grad():
|
91 |
outputs = model(**inputs)
|
92 |
logits = outputs.logits
|
93 |
-
probs = F.softmax(logits, dim=-1).cpu() #
|
94 |
preds = torch.argmax(probs, dim=-1).cpu()
|
95 |
|
96 |
# Build inline styled text
|
97 |
styled_chunks = []
|
98 |
for i, sent in enumerate(sentences):
|
99 |
pred = preds[i].item()
|
100 |
-
#
|
101 |
-
if pred == 0
|
102 |
-
|
103 |
-
|
104 |
-
r, g = 0, 255 # green for Human
|
105 |
-
confidence = probs[i, pred].item() # between 0 and 1
|
106 |
-
alpha = confidence # drive opacity directly
|
107 |
-
# wrap sentence in span
|
108 |
span = (
|
109 |
f"<span "
|
110 |
f"style='background-color: rgba({r},{g},0,{alpha:.2f}); "
|
@@ -114,15 +114,14 @@ if st.button("Classify", type="primary"):
|
|
114 |
)
|
115 |
styled_chunks.append(span)
|
116 |
|
117 |
-
# join all sentences inline
|
118 |
full_text_html = "".join(styled_chunks)
|
119 |
st.markdown(full_text_html, unsafe_allow_html=True)
|
120 |
|
121 |
-
# Overall AI likelihood
|
122 |
avg_probs = torch.mean(probs, dim=0)
|
123 |
-
ai_likelihood = avg_probs[0].item() * 100
|
124 |
st.subheader(f"🤖 AI Likelihood: {ai_likelihood:.1f}%")
|
125 |
|
126 |
except Exception as e:
|
127 |
-
st.error(f"
|
128 |
-
logger.error("
|
|
|
3 |
import torch.nn.functional as F
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
import re
|
6 |
+
import logging # Optional: Add logging for better debugging
|
7 |
|
8 |
+
# Set up logging (optional but helpful)
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
|
|
16 |
layout="wide"
|
17 |
)
|
18 |
|
19 |
+
# Logo as provided
|
20 |
+
st.logo(
|
21 |
+
image="https://dejan.ai/wp-content/uploads/2024/02/dejan-300x103.png",
|
22 |
+
link="https://dejan.ai/",
|
|
|
|
|
|
|
|
|
23 |
)
|
24 |
|
25 |
+
# Font styling
|
26 |
st.markdown("""
|
27 |
<link href="https://fonts.googleapis.com/css2?family=Roboto&display=swap" rel="stylesheet">
|
28 |
<style>
|
29 |
+
html, body, [class*="css"] {
|
30 |
+
font-family: 'Roboto', sans-serif;
|
31 |
+
}
|
32 |
</style>
|
33 |
""", unsafe_allow_html=True)
|
34 |
|
35 |
+
@st.cache_resource # Cache the model and tokenizer to avoid reloading on every interaction
|
36 |
def load_model_and_tokenizer(model_name):
|
37 |
+
"""Loads the model and tokenizer."""
|
38 |
+
logger.info(f"Loading tokenizer: {model_name}")
|
39 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
40 |
+
|
41 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
42 |
dtype = torch.bfloat16 if (device.type == "cuda" and torch.cuda.is_bf16_supported()) else torch.float32
|
43 |
+
logger.info(f"Using device: {device} with dtype: {dtype}")
|
44 |
+
|
45 |
+
logger.info(f"Loading model: {model_name}")
|
46 |
model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=dtype)
|
47 |
model.to(device)
|
48 |
model.eval()
|
49 |
+
logger.info("Model loaded successfully.")
|
50 |
+
|
51 |
return tokenizer, model, device
|
52 |
|
53 |
MODEL_NAME = "dejanseo/ai-detection-small"
|
|
|
55 |
tokenizer, model, device = load_model_and_tokenizer(MODEL_NAME)
|
56 |
except Exception as e:
|
57 |
st.error(f"Error loading model: {e}")
|
58 |
+
logger.error(f"Failed to load model or tokenizer: {e}", exc_info=True)
|
59 |
st.stop()
|
60 |
|
61 |
# Labels
|
62 |
LABELS = ["AI Content", "Human Content"]
|
63 |
|
64 |
+
# Regex-based sentence splitter
|
65 |
def sent_tokenize(text):
|
66 |
sentences = re.split(r'(?<=[\.!?])\s+', text.strip())
|
67 |
return [s for s in sentences if s]
|
68 |
|
69 |
# UI
|
70 |
st.title("AI Article Detection")
|
71 |
+
text = st.text_area("Enter text to classify", height=200, placeholder="Paste your text here...")
|
72 |
|
73 |
if st.button("Classify", type="primary"):
|
74 |
+
if not text or not text.strip():
|
75 |
st.warning("Please enter some text.")
|
76 |
else:
|
77 |
+
with st.spinner("Analyzing... Please wait."):
|
78 |
try:
|
79 |
sentences = sent_tokenize(text)
|
80 |
if not sentences:
|
81 |
st.warning("No sentences detected.")
|
82 |
st.stop()
|
83 |
|
84 |
+
# Tokenize sentences
|
85 |
inputs = tokenizer(
|
86 |
sentences,
|
87 |
return_tensors="pt",
|
|
|
94 |
with torch.no_grad():
|
95 |
outputs = model(**inputs)
|
96 |
logits = outputs.logits
|
97 |
+
probs = F.softmax(logits, dim=-1).cpu() # [n_sentences, 2]
|
98 |
preds = torch.argmax(probs, dim=-1).cpu()
|
99 |
|
100 |
# Build inline styled text
|
101 |
styled_chunks = []
|
102 |
for i, sent in enumerate(sentences):
|
103 |
pred = preds[i].item()
|
104 |
+
# red for AI (class 0), green for Human (class 1)
|
105 |
+
r, g = (255, 0) if pred == 0 else (0, 255)
|
106 |
+
confidence = probs[i, pred].item() # 0.0–1.0
|
107 |
+
alpha = confidence # opacity
|
|
|
|
|
|
|
|
|
108 |
span = (
|
109 |
f"<span "
|
110 |
f"style='background-color: rgba({r},{g},0,{alpha:.2f}); "
|
|
|
114 |
)
|
115 |
styled_chunks.append(span)
|
116 |
|
|
|
117 |
full_text_html = "".join(styled_chunks)
|
118 |
st.markdown(full_text_html, unsafe_allow_html=True)
|
119 |
|
120 |
+
# Overall AI likelihood (class 0)
|
121 |
avg_probs = torch.mean(probs, dim=0)
|
122 |
+
ai_likelihood = avg_probs[0].item() * 100
|
123 |
st.subheader(f"🤖 AI Likelihood: {ai_likelihood:.1f}%")
|
124 |
|
125 |
except Exception as e:
|
126 |
+
st.error(f"An error occurred during analysis: {e}")
|
127 |
+
logger.error("Analysis failed", exc_info=True)
|