Spaces:
Sleeping
Sleeping
File size: 15,411 Bytes
c7476e8 0ea134e c7476e8 0ea134e c7476e8 0ea134e c7476e8 0ea134e c7476e8 0ea134e c7476e8 0ea134e a619200 c7476e8 0ea134e c7476e8 0ea134e c7476e8 0ea134e c7476e8 0ea134e c7476e8 0ea134e c7476e8 a619200 c7476e8 0ea134e c7476e8 0ea134e c7476e8 0ea134e c7476e8 0ea134e c7476e8 0ea134e c7476e8 0ea134e c7476e8 0ea134e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, TrainerCallback, DataCollatorWithPadding, DefaultDataCollator
from openai import OpenAI
from huggingface_hub import login
import datasets
from datasets import Dataset
import json
import pandas as pd
import numpy as np
import torch
import wandb
import copy
import os
import sys
import re
from peft import LoraConfig, TaskType, get_peft_model, AutoPeftModelForCausalLM
from sklearn.model_selection import train_test_split
import nltk
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
IS_COLAB = False
if "google.colab" in sys.modules or "google.colab" in os.environ:
IS_COLAB = True
# Load env secrets
if IS_COLAB:
from google.colab import userdata
OPENAI_API_KEY=userdata.get('OPENAI_API_KEY')
WANDB_API_KEY=userdata.get('WANDB_API_KEY')
else:
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
WANDB_API_KEY = os.environ.get("WANDB_API_KEY")
# Authenticate Weights and Biases
wandb.login(key=WANDB_API_KEY)
# Custom callback to capture logs
class LoggingCallback(TrainerCallback):
def __init__(self):
self.logs = [] # Store logs
def on_log(self, args, state, control, logs=None, **kwargs):
if logs:
self.logs.append(logs) # Append logs to list
class LLMTrainingApp:
def __init__(self):
# self.metric = datasets.load_metric('sacrebleu')
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.finetuning_dataset = []
self.prompt_template = """### Question: {question} ### Answer: """
self.training_output = "/content/peft-model" if IS_COLAB else "./peft-model"
self.localpath = "/content/finetuned-model" if IS_COLAB else "./finetuned-model"
self.tokenizer = None
self.model = None
self.model_name = None
self.fine_tuned_model = None
self.teacher_model = OpenAI(api_key=OPENAI_API_KEY)
self.base_models = {
"SmolLM": {"hf_name":"HuggingFaceTB/SmolLM2-135M",
"model_size": "135M",
"training_size": "2T",
"context_window": "8192"},
"GPT2": {"hf_name":"openai-community/gpt2",
"model_size": "137M",
"training_size": "2T",
"context_window": "1024"}
}
self.peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1)
self.logging_callback = LoggingCallback()
def login_into_hf(self, token):
if not token:
return "β Please enter a valid token."
try:
login(token)
return f"β
Logged in successfully!"
except Exception as e:
return f"β Login failed: {str(e)}"
def select_model(self, model_name):
self.model_name = model_name
model_hf_name = self.base_models[model_name]["hf_name"]
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_hf_name)
self.tokenizer.pad_token = self.tokenizer.eos_token
base_model = AutoModelForCausalLM.from_pretrained(
model_hf_name,
torch_dtype="auto",
device_map="auto"
)
self.model = get_peft_model(base_model, self.peft_config)
params = self.model.get_nb_trainable_parameters()
percent_trainable = round(100 * (params[0] / params[1]), 2)
return f"β
Loaded model into memory! Base Model card: {json.dumps(self.base_models[model_name])} - % of trainable parameters for PEFT model: {percent_trainable}%"
except Exception as e:
return f"β Failed to load model and/or tokenizer: {str(e)}"
def create_golden_dataset(self, dataset):
try:
dataset = pd.DataFrame(dataset)
for i, row in dataset.iterrows():
self.finetuning_dataset.append({"question": self.prompt_template.format(question=row["Question"]), "answer": row["Answer"]})
return "β
Golden dataset created!"
except Exception as e:
return f"β Failed to create dataset: {str(e)}"
def extend_dataset(self):
try:
completion = self.teacher_model.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": """Given the following question-answer pairs, generate 20 similar pairs in the following json format below. Do not respond with anything other than the json.
```json
[
{
"question": "question 1",
"answer": "answer 1"
},
{
"question": "question 2",
"answer": "answer 2"
}
]
"""
},
{
"role": "user",
"content": f"""Here are the question-answer pairs: {json.dumps(self.finetuning_dataset)}
"""
}
]
)
response = completion.choices[0].message.content
print(f"raw response: {response}")
clean_response = response.replace("```json", "").replace("```", "").strip()
print(f"clean response: {clean_response}")
new_data = json.loads(clean_response)
for i, row in enumerate(new_data):
row["question"] = row["question"].replace("### Question:", "").replace("### Answer:", "").strip()
row["answer"] = row["answer"].replace("### Answer:", "").strip()
self.finetuning_dataset.append({"question": self.prompt_template.format(question=row["question"]), "answer": row["answer"]})
# create df to display
df = pd.DataFrame(new_data)
return "β
Synthetic dataset generated!", df
except Exception as e:
return f"β Failed to generate synthetic dataset: {str(e)}", pd.DataFrame()
def tokenize_function(self, examples):
try:
# Tokenize the question and answer as input and target (labels) for causal LM
encoding = self.tokenizer(examples['question'], examples['answer'], padding=True)
# Create labels (same as input_ids, but mask the non-answer part)
labels = copy.deepcopy(encoding["input_ids"])
for i in range(len(examples["question"])):
# print(examples["question"][i])
question_length = len(self.tokenizer(examples['question'][i], add_special_tokens=False)["input_ids"])
# print(f'question length: {question_length}')
labels[i][:question_length] = [-100] * question_length # Mask question tokens
encoding["labels"] = labels
return encoding
except Exception as e:
return f"β Failed to tokenize input: {str(e)}"
def prepare_data_for_training(self):
try:
dataset = Dataset.from_dict({
"question": [entry["question"] for entry in self.finetuning_dataset],
"answer": [entry["answer"] for entry in self.finetuning_dataset],
})
dataset = dataset.map(self.tokenize_function, batched=True)
train_dataset, test_dataset = dataset.train_test_split(test_size=0.2).values()
return {"train": train_dataset, "test": test_dataset}
except Exception as e:
return f"β Failed to prepare data for training: {str(e)}"
def compute_bleu(self, eval_pred):
predictions, labels = eval_pred
self.predictions = predictions
self.labels = labels
# Convert logits to token IDs using argmax
predictions = np.argmax(predictions, axis=-1)
# Ensure predictions and labels are integers within vocab range
predictions = np.clip(predictions, 0, self.tokenizer.vocab_size - 1).astype(int)
labels = np.clip(labels, 0, self.tokenizer.vocab_size - 1).astype(int)
scores = []
for prediction, label in zip(predictions, labels):
print(f"Prediction: {prediction}, Label: {label}")
# Remove leading 0's from array
prediction = prediction[np.argmax(prediction != 0):]
label = label[np.argmax(label != 0):]
# Decode predicted tokens
decoded_preds = self.tokenizer.decode(prediction, skip_special_tokens=True).split()
decoded_labels = self.tokenizer.decode(label, skip_special_tokens=True).split()
scores.append(sentence_bleu([decoded_labels], decoded_preds, smoothing_function=SmoothingFunction().method1))
average_score = sum(scores) / len(scores)
print(f"Average BLEU score: {average_score}")
return {"bleu": average_score}
# return score
# return {"bleu": 1}
def train_model(self):
try:
tokenized_datasets = self.prepare_data_for_training()
print('finished preparing data for training')
# Create training arguments
training_args = TrainingArguments(
output_dir=self.training_output,
learning_rate=1e-3,
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
num_train_epochs=5,
weight_decay=0.01,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
print('training arguments set...')
# Create trainer & attach logging callback
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
tokenizer=self.tokenizer,
data_collator=DefaultDataCollator(),
compute_metrics=self.compute_bleu,
callbacks=[self.logging_callback],
)
print('trainer set...')
# Start training and yield logs in real-time
trainer.train()
# Save trained model to HF
self.model.save_pretrained(self.localpath) # save to local
self.model.push_to_hub(f"{self.model_name}-lora")
return f"β
Training complete!\n {json.dumps(self.logging_callback.logs)}"
except Exception as e:
return f"β Training failed: {str(e)}"
def run_inference(self, prompt):
try:
# Load fine-tuned memory into memory and set mode to eval
self.fine_tuned_model = AutoPeftModelForCausalLM.from_pretrained(self.localpath)
self.fine_tuned_model = self.fine_tuned_model.to(self.device)
self.fine_tuned_model.eval()
# Tokenize input with padding and attention mask
inputs = self.tokenizer(prompt, return_tensors="pt", padding=True).to(self.device)
# Generate response
output = self.fine_tuned_model.generate(
**inputs,
max_length=50, # Limit response length
num_return_sequences=1, # Single response
temperature=0.7, # Sampling randomness
top_p=0.9 # Nucleus sampling
)
response = self.tokenizer.batch_decode(output.detach().cpu().numpy(), skip_special_tokens=True)[0]
return response
except Exception as e:
return f"β Inference failed: {str(e)}"
def build_ui(self):
with gr.Blocks() as demo:
gr.Markdown("# LLM Fine-tuning")
# Model Selection
with gr.Group():
gr.Markdown("### 1. Login into Hugging Face")
with gr.Column():
token = gr.Textbox(label="Enter Hugging Face Access Token (w/ write permissions)", type="password")
inference_btn = gr.Button("Login", variant="primary")
status = gr.Textbox(label="Status")
inference_btn.click(self.login_into_hf, inputs=token, outputs=status)
# Model Selection
with gr.Group():
gr.Markdown("### 2. Select Model")
with gr.Column():
model_dropdown = gr.Dropdown([key for key in self.base_models.keys()], label="Small Models")
select_model_btn = gr.Button("Select", variant="primary")
selected_model_text = gr.Textbox(label="Model Status")
select_model_btn.click(self.select_model, inputs=model_dropdown, outputs=[selected_model_text])
# Create Golden Dataset
with gr.Group():
gr.Markdown("### 3. Create Golden Dataset")
with gr.Column():
dataset_table = gr.Dataframe(
headers=["Question", "Answer"],
value=[["", ""] for _ in range(3)],
label="Golden Dataset"
)
create_data_btn = gr.Button("Create Dataset", variant="primary")
dataset_status = gr.Textbox(label="Dataset Status")
create_data_btn.click(self.create_golden_dataset, inputs=dataset_table, outputs=[dataset_status])
# Generate Full Dataset
with gr.Group():
gr.Markdown("### 4. Extend Dataset with Synthetic Data")
with gr.Column():
dataset_table = gr.Dataframe(
headers=["Question", "Answer"],
label="Golden + Synthetic Dataset"
)
generate_status = gr.Textbox(label="Dataset Generation Status")
generate_data_btn = gr.Button("Extend Dataset", variant="primary")
generate_data_btn.click(self.extend_dataset, outputs=[generate_status, dataset_table])
# Train Model & Visualize Loss
with gr.Group():
gr.Markdown("### 5. Train Model")
with gr.Column():
train_status = gr.Textbox(label="Training Status")
train_btn = gr.Button("Train", variant="primary")
train_btn.click(self.train_model, outputs=[train_status])
# Run Inference
with gr.Group():
gr.Markdown("### 6. Run Inference")
with gr.Column():
user_prompt = gr.Textbox(label="Enter Prompt")
inference_btn = gr.Button("Run Inference", variant="primary")
inference_output = gr.Textbox(label="Inference Output")
inference_btn.click(self.run_inference, inputs=user_prompt, outputs=inference_output)
return demo
# Create an instance of the app
app = LLMTrainingApp()
# Launch the Gradio app using the class method
app.build_ui().launch()
|