Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,12 +6,17 @@ import datasets
|
|
6 |
from datasets import Dataset
|
7 |
import json
|
8 |
import pandas as pd
|
|
|
9 |
import torch
|
10 |
import wandb
|
|
|
11 |
import os
|
12 |
import sys
|
|
|
13 |
from peft import LoraConfig, TaskType, get_peft_model, AutoPeftModelForCausalLM
|
14 |
from sklearn.model_selection import train_test_split
|
|
|
|
|
15 |
|
16 |
IS_COLAB = False
|
17 |
if "google.colab" in sys.modules or "google.colab" in os.environ:
|
@@ -88,7 +93,7 @@ class LLMTrainingApp:
|
|
88 |
self.model = get_peft_model(base_model, self.peft_config)
|
89 |
params = self.model.get_nb_trainable_parameters()
|
90 |
percent_trainable = round(100 * (params[0] / params[1]), 2)
|
91 |
-
return f"β
Loaded model into memory! Base Model card: {json.dumps(self.base_models[model_name])} - % of trainable parameters for PEFT model: {percent_trainable}"
|
92 |
except Exception as e:
|
93 |
return f"β Failed to load model and/or tokenizer: {str(e)}"
|
94 |
|
@@ -107,7 +112,7 @@ class LLMTrainingApp:
|
|
107 |
model="gpt-4o",
|
108 |
messages=[
|
109 |
{
|
110 |
-
"role": "
|
111 |
"content": """Given the following question-answer pairs, generate 10 similar pairs in the following json format below. Do not respond with anything other than the json.
|
112 |
```json
|
113 |
[
|
@@ -121,6 +126,11 @@ class LLMTrainingApp:
|
|
121 |
}
|
122 |
]
|
123 |
"""
|
|
|
|
|
|
|
|
|
|
|
124 |
}
|
125 |
]
|
126 |
)
|
@@ -130,6 +140,8 @@ class LLMTrainingApp:
|
|
130 |
print(f"clean response: {clean_response}")
|
131 |
new_data = json.loads(clean_response)
|
132 |
for i, row in enumerate(new_data):
|
|
|
|
|
133 |
self.finetuning_dataset.append({"question": self.prompt_template.format(question=row["question"]), "answer": row["answer"]})
|
134 |
# create df to display
|
135 |
df = pd.DataFrame(new_data)
|
@@ -141,8 +153,14 @@ class LLMTrainingApp:
|
|
141 |
try:
|
142 |
# Tokenize the question and answer as input and target (labels) for causal LM
|
143 |
encoding = self.tokenizer(examples['question'], examples['answer'], padding=True)
|
144 |
-
#
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
return encoding
|
147 |
except Exception as e:
|
148 |
return f"β Failed to tokenize input: {str(e)}"
|
@@ -163,27 +181,42 @@ class LLMTrainingApp:
|
|
163 |
|
164 |
def compute_bleu(self, eval_pred):
|
165 |
predictions, labels = eval_pred
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
#
|
170 |
-
|
171 |
-
|
172 |
-
#
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
def train_model(self):
|
185 |
try:
|
186 |
tokenized_datasets = self.prepare_data_for_training()
|
|
|
187 |
|
188 |
# Create training arguments
|
189 |
training_args = TrainingArguments(
|
@@ -198,6 +231,8 @@ class LLMTrainingApp:
|
|
198 |
load_best_model_at_end=True,
|
199 |
)
|
200 |
|
|
|
|
|
201 |
# Create trainer & attach logging callback
|
202 |
trainer = Trainer(
|
203 |
model=self.model,
|
@@ -210,17 +245,16 @@ class LLMTrainingApp:
|
|
210 |
callbacks=[self.logging_callback],
|
211 |
)
|
212 |
|
|
|
|
|
213 |
# Start training and yield logs in real-time
|
214 |
trainer.train()
|
215 |
|
216 |
-
# for log in logging_callback.logs:
|
217 |
-
# yield str(log)
|
218 |
-
|
219 |
# Save trained model to HF
|
220 |
self.model.save_pretrained(self.localpath) # save to local
|
221 |
self.model.push_to_hub(f"{self.model_name}-lora")
|
222 |
|
223 |
-
return "β
Training complete
|
224 |
except Exception as e:
|
225 |
return f"β Training failed: {str(e)}"
|
226 |
|
@@ -292,20 +326,12 @@ class LLMTrainingApp:
|
|
292 |
label="Golden + Synthetic Dataset"
|
293 |
)
|
294 |
generate_status = gr.Textbox(label="Dataset Generation Status")
|
295 |
-
generate_data_btn = gr.Button("
|
296 |
generate_data_btn.click(self.extend_dataset, outputs=[generate_status, dataset_table])
|
297 |
|
298 |
# Train Model & Visualize Loss
|
299 |
with gr.Group():
|
300 |
-
gr.Markdown("### 5.
|
301 |
-
with gr.Column():
|
302 |
-
train_status = gr.Textbox(label="Training Status", lines=10)
|
303 |
-
train_btn = gr.Button("Train", variant="primary")
|
304 |
-
train_btn.click(self.log_generator, outputs=[train_status])
|
305 |
-
|
306 |
-
# Train Model & Visualize Loss
|
307 |
-
with gr.Group():
|
308 |
-
gr.Markdown("### 6. Train Model")
|
309 |
with gr.Column():
|
310 |
train_status = gr.Textbox(label="Training Status")
|
311 |
train_btn = gr.Button("Train", variant="primary")
|
@@ -313,7 +339,7 @@ class LLMTrainingApp:
|
|
313 |
|
314 |
# Run Inference
|
315 |
with gr.Group():
|
316 |
-
gr.Markdown("###
|
317 |
with gr.Column():
|
318 |
user_prompt = gr.Textbox(label="Enter Prompt")
|
319 |
inference_btn = gr.Button("Run Inference", variant="primary")
|
@@ -326,4 +352,6 @@ class LLMTrainingApp:
|
|
326 |
app = LLMTrainingApp()
|
327 |
|
328 |
# Launch the Gradio app using the class method
|
329 |
-
app.build_ui().launch()
|
|
|
|
|
|
6 |
from datasets import Dataset
|
7 |
import json
|
8 |
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
import torch
|
11 |
import wandb
|
12 |
+
import copy
|
13 |
import os
|
14 |
import sys
|
15 |
+
import re
|
16 |
from peft import LoraConfig, TaskType, get_peft_model, AutoPeftModelForCausalLM
|
17 |
from sklearn.model_selection import train_test_split
|
18 |
+
import nltk
|
19 |
+
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
20 |
|
21 |
IS_COLAB = False
|
22 |
if "google.colab" in sys.modules or "google.colab" in os.environ:
|
|
|
93 |
self.model = get_peft_model(base_model, self.peft_config)
|
94 |
params = self.model.get_nb_trainable_parameters()
|
95 |
percent_trainable = round(100 * (params[0] / params[1]), 2)
|
96 |
+
return f"β
Loaded model into memory! Base Model card: {json.dumps(self.base_models[model_name])} - % of trainable parameters for PEFT model: {percent_trainable}%"
|
97 |
except Exception as e:
|
98 |
return f"β Failed to load model and/or tokenizer: {str(e)}"
|
99 |
|
|
|
112 |
model="gpt-4o",
|
113 |
messages=[
|
114 |
{
|
115 |
+
"role": "system",
|
116 |
"content": """Given the following question-answer pairs, generate 10 similar pairs in the following json format below. Do not respond with anything other than the json.
|
117 |
```json
|
118 |
[
|
|
|
126 |
}
|
127 |
]
|
128 |
"""
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"role": "user",
|
132 |
+
"content": f"""Here are the question-answer pairs: {json.dumps(self.finetuning_dataset)}
|
133 |
+
"""
|
134 |
}
|
135 |
]
|
136 |
)
|
|
|
140 |
print(f"clean response: {clean_response}")
|
141 |
new_data = json.loads(clean_response)
|
142 |
for i, row in enumerate(new_data):
|
143 |
+
row["question"] = row["question"].replace("### Question:", "").replace("### Answer:", "").strip()
|
144 |
+
row["answer"] = row["answer"].replace("### Answer:", "").strip()
|
145 |
self.finetuning_dataset.append({"question": self.prompt_template.format(question=row["question"]), "answer": row["answer"]})
|
146 |
# create df to display
|
147 |
df = pd.DataFrame(new_data)
|
|
|
153 |
try:
|
154 |
# Tokenize the question and answer as input and target (labels) for causal LM
|
155 |
encoding = self.tokenizer(examples['question'], examples['answer'], padding=True)
|
156 |
+
# Create labels (same as input_ids, but mask the non-answer part)
|
157 |
+
labels = copy.deepcopy(encoding["input_ids"])
|
158 |
+
for i in range(len(examples["question"])):
|
159 |
+
# print(examples["question"][i])
|
160 |
+
question_length = len(self.tokenizer(examples['question'][i], add_special_tokens=False)["input_ids"])
|
161 |
+
# print(f'question length: {question_length}')
|
162 |
+
labels[i][:question_length] = [-100] * question_length # Mask question tokens
|
163 |
+
encoding["labels"] = labels
|
164 |
return encoding
|
165 |
except Exception as e:
|
166 |
return f"β Failed to tokenize input: {str(e)}"
|
|
|
181 |
|
182 |
def compute_bleu(self, eval_pred):
|
183 |
predictions, labels = eval_pred
|
184 |
+
self.predictions = predictions
|
185 |
+
self.labels = labels
|
186 |
+
|
187 |
+
# Convert logits to token IDs using argmax
|
188 |
+
predictions = np.argmax(predictions, axis=-1)
|
189 |
+
|
190 |
+
# Ensure predictions and labels are integers within vocab range
|
191 |
+
predictions = np.clip(predictions, 0, self.tokenizer.vocab_size - 1).astype(int)
|
192 |
+
labels = np.clip(labels, 0, self.tokenizer.vocab_size - 1).astype(int)
|
193 |
+
|
194 |
+
scores = []
|
195 |
+
|
196 |
+
for prediction, label in zip(predictions, labels):
|
197 |
+
print(f"Prediction: {prediction}, Label: {label}")
|
198 |
+
|
199 |
+
# Remove leading 0's from array
|
200 |
+
prediction = prediction[np.argmax(prediction != 0):]
|
201 |
+
label = label[np.argmax(label != 0):]
|
202 |
+
|
203 |
+
# Decode predicted tokens
|
204 |
+
decoded_preds = self.tokenizer.decode(prediction, skip_special_tokens=True).split()
|
205 |
+
decoded_labels = self.tokenizer.decode(label, skip_special_tokens=True).split()
|
206 |
+
|
207 |
+
scores.append(sentence_bleu([decoded_labels], decoded_preds, smoothing_function=SmoothingFunction().method1))
|
208 |
+
|
209 |
+
average_score = sum(scores) / len(scores)
|
210 |
+
print(f"Average BLEU score: {average_score}")
|
211 |
+
return {"bleu": average_score}
|
212 |
+
|
213 |
+
# return score
|
214 |
+
# return {"bleu": 1}
|
215 |
|
216 |
def train_model(self):
|
217 |
try:
|
218 |
tokenized_datasets = self.prepare_data_for_training()
|
219 |
+
print('finished preparing data for training')
|
220 |
|
221 |
# Create training arguments
|
222 |
training_args = TrainingArguments(
|
|
|
231 |
load_best_model_at_end=True,
|
232 |
)
|
233 |
|
234 |
+
print('training arguments set...')
|
235 |
+
|
236 |
# Create trainer & attach logging callback
|
237 |
trainer = Trainer(
|
238 |
model=self.model,
|
|
|
245 |
callbacks=[self.logging_callback],
|
246 |
)
|
247 |
|
248 |
+
print('trainer set...')
|
249 |
+
|
250 |
# Start training and yield logs in real-time
|
251 |
trainer.train()
|
252 |
|
|
|
|
|
|
|
253 |
# Save trained model to HF
|
254 |
self.model.save_pretrained(self.localpath) # save to local
|
255 |
self.model.push_to_hub(f"{self.model_name}-lora")
|
256 |
|
257 |
+
return f"β
Training complete!\n {json.dumps(self.logging_callback.logs)}"
|
258 |
except Exception as e:
|
259 |
return f"β Training failed: {str(e)}"
|
260 |
|
|
|
326 |
label="Golden + Synthetic Dataset"
|
327 |
)
|
328 |
generate_status = gr.Textbox(label="Dataset Generation Status")
|
329 |
+
generate_data_btn = gr.Button("Extend Dataset", variant="primary")
|
330 |
generate_data_btn.click(self.extend_dataset, outputs=[generate_status, dataset_table])
|
331 |
|
332 |
# Train Model & Visualize Loss
|
333 |
with gr.Group():
|
334 |
+
gr.Markdown("### 5. Train Model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
with gr.Column():
|
336 |
train_status = gr.Textbox(label="Training Status")
|
337 |
train_btn = gr.Button("Train", variant="primary")
|
|
|
339 |
|
340 |
# Run Inference
|
341 |
with gr.Group():
|
342 |
+
gr.Markdown("### 6. Run Inference")
|
343 |
with gr.Column():
|
344 |
user_prompt = gr.Textbox(label="Enter Prompt")
|
345 |
inference_btn = gr.Button("Run Inference", variant="primary")
|
|
|
352 |
app = LLMTrainingApp()
|
353 |
|
354 |
# Launch the Gradio app using the class method
|
355 |
+
app.build_ui().launch()
|
356 |
+
|
357 |
+
|