Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score, f1_score | |
# Load dataset | |
dataset = load_dataset("allocine")["test"] | |
# Load model | |
classifier = pipeline("text-classification", model="./models") | |
# Get predictions | |
predictions = [classifier(text["review"])[0]["label"] for text in dataset] | |
labels = dataset["label"] | |
# Convert labels | |
label_map = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} | |
predictions = [label_map[p] for p in predictions] | |
# Compute metrics | |
accuracy = accuracy_score(labels, predictions) | |
f1 = f1_score(labels, predictions, average="weighted") | |
print(f"Accuracy: {accuracy:.4f}") | |
print(f"F1-score: {f1:.4f}") | |