from transformers import pipeline from datasets import load_dataset from sklearn.metrics import accuracy_score, f1_score # Load dataset dataset = load_dataset("allocine")["test"] # Load model classifier = pipeline("text-classification", model="./models") # Get predictions predictions = [classifier(text["review"])[0]["label"] for text in dataset] labels = dataset["label"] # Convert labels label_map = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} predictions = [label_map[p] for p in predictions] # Compute metrics accuracy = accuracy_score(labels, predictions) f1 = f1_score(labels, predictions, average="weighted") print(f"Accuracy: {accuracy:.4f}") print(f"F1-score: {f1:.4f}")