Spaces:
Runtime error
Runtime error
File size: 17,924 Bytes
640a27b f71eb42 0002379 fc73e59 a24b16a fc73e59 81ccbca 500d414 506badf 0002379 e3abd80 0002379 97b401e 0002379 daebf8f 0002379 5349660 506badf 2688a68 506badf 5349660 843b14b 88c9af4 7c89716 f71eb42 f0cf9b0 7c89716 f0cf9b0 a24b16a 5349660 506badf f0cf9b0 5349660 f0cf9b0 5349660 ac5ee04 5349660 0166058 0002379 0166058 5349660 0a3fdbd 5349660 d8ffb68 0002379 5349660 0166058 5349660 0166058 843b14b 5349660 f0cf9b0 843b14b 5349660 ac5ee04 843b14b f0cf9b0 5349660 0002379 5349660 98bb9c3 ab11bdd 98bb9c3 5349660 98bb9c3 5349660 94be4c7 5349660 94be4c7 fc73e59 5349660 81ccbca 5349660 d8ffb68 94be4c7 d8ffb68 5349660 0002379 81ccbca d8ffb68 0002379 5349660 0002379 5349660 fc73e59 94be4c7 5349660 ab11bdd 5349660 d8ffb68 843b14b fc73e59 ab11bdd 94be4c7 fc73e59 7c89716 88c9af4 81ccbca 7c89716 ab11bdd a24b16a 5349660 843b14b a24b16a 5349660 a24b16a 94be4c7 a24b16a fc73e59 94be4c7 fc73e59 a24b16a 81ccbca a24b16a 94be4c7 fc73e59 a24b16a ab11bdd fc73e59 a24b16a d8ffb68 ab11bdd d8ffb68 ab11bdd d8ffb68 a24b16a d8ffb68 c19b710 7c89716 81ccbca a24b16a 0002379 7c89716 843b14b d8ffb68 843b14b 0002379 d8ffb68 843b14b 7c89716 843b14b f71eb42 7c89716 a24b16a 0002379 d8ffb68 a24b16a 7c89716 a24b16a 843b14b 7c89716 f71eb42 843b14b f0cf9b0 843b14b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import gradio as gr
import torch
import os
from diffusers.utils import is_xformers_available
from finetuning import FineTunedModel
from StableDiffuser import StableDiffuser
from memory_efficiency import MemoryEfficiencyWrapper
from train import train
import os
model_map = {'Van Gogh': 'models/vangogh.pt',
'Pablo Picasso': 'models/pablopicasso.pt',
'Car': 'models/car.pt',
'Garbage Truck': 'models/garbagetruck.pt',
'French Horn': 'models/frenchhorn.pt',
'Kilian Eng': 'models/kilianeng.pt',
'Thomas Kinkade': 'models/thomaskinkade.pt',
'Tyler Edlin': 'models/tyleredlin.pt',
'Kelly McKernan': 'models/kellymckernan.pt',
'Rembrandt': 'models/rembrandt.pt' }
for model_file in os.listdir('models'):
path = 'models/' + model_file
if any([existing_path == path for existing_path in model_map.values()]):
continue
model_map[model_file] = path
ORIGINAL_SPACE_ID = 'baulab/Erasing-Concepts-In-Diffusion'
SPACE_ID = os.getenv('SPACE_ID')
SHARED_UI_WARNING = f'''## Attention - Training using the ESD-u method does not work in this shared UI. You can either duplicate and use it with a gpu with at least 40GB, or clone this repository to run on your own machine.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''
class Demo:
def __init__(self) -> None:
self.training = False
self.generating = False
with gr.Blocks() as demo:
self.layout()
demo.queue(concurrency_count=5).launch()
def layout(self):
with gr.Row():
if SPACE_ID == ORIGINAL_SPACE_ID:
self.warning = gr.Markdown(SHARED_UI_WARNING)
with gr.Row():
with gr.Tab("Test") as inference_column:
with gr.Row():
self.explain_infr = gr.Markdown(interactive=False,
value='This is a demo of [Erasing Concepts from Stable Diffusion](https://erasing.baulab.info/). To try out a model where a concept has been erased, select a model and enter any prompt. For example, if you select the model "Van Gogh" you can generate images for the prompt "A portrait in the style of Van Gogh" and compare the erased and unerased models. We have also provided several other pre-fine-tuned models with artistic styles and objects erased (Check out the "ESD Model" drop-down). You can also train and run your own custom models. Check out the "train" section for custom erasure of concepts.')
with gr.Row():
with gr.Column(scale=1):
self.prompt_input_infr = gr.Text(
placeholder="Enter prompt...",
label="Prompt",
info="Prompt to generate"
)
self.negative_prompt_input_infr = gr.Text(
label="Negative prompt"
)
with gr.Row():
self.model_dropdown = gr.Dropdown(
label="ESD Model",
choices= list(model_map.keys()),
value='Van Gogh',
interactive=True
)
self.seed_infr = gr.Number(
label="Seed",
value=42
)
self.img_width_infr = gr.Slider(
label="Image width",
minimum=256,
maximum=1024,
value=512,
step=64
)
self.img_height_infr = gr.Slider(
label="Image height",
minimum=256,
maximum=1024,
value=512,
step=64
)
self.base_repo_id_or_path_input_infr = gr.Text(
label="Base model",
value="CompVis/stable-diffusion-v1-4",
info="Path or huggingface repo id of the base model that this edit was done against"
)
with gr.Column(scale=2):
self.infr_button = gr.Button(
value="Generate",
interactive=True
)
with gr.Row():
self.image_new = gr.Image(
label="ESD",
interactive=False
)
self.image_orig = gr.Image(
label="SD",
interactive=False
)
with gr.Tab("Train") as training_column:
with gr.Row():
self.explain_train= gr.Markdown(interactive=False,
value='In this part you can erase any concept from Stable Diffusion. Enter a prompt for the concept or style you want to erase, and select ESD-x if you want to focus erasure on prompts that mention the concept explicitly. [NOTE: ESD-u is currently unavailable in this space. But you can duplicate the space and run it on GPU with VRAM >40GB for enabling ESD-u]. With default settings, it takes about 15 minutes to fine-tune the model; then you can try inference above or download the weights. The training code used here is slightly different than the code tested in the original paper. Code and details are at [github link](https://github.com/rohitgandikota/erasing).')
with gr.Row():
with gr.Column(scale=3):
self.train_model_input = gr.Text(
label="Model to Edit",
value="CompVis/stable-diffusion-v1-4",
info="Path or huggingface repo id of the model to edit"
)
self.train_img_size_input = gr.Slider(
value=512,
step=64,
minimum=256,
maximum=1024,
label="Image Size",
info="Image size for training, should match the model's native image size"
)
self.prompt_input = gr.Text(
placeholder="Enter prompt...",
label="Prompt to Erase",
info="Prompt corresponding to concept to erase"
)
choices = ['ESD-x', 'ESD-self', 'ESD-u']
#if torch.cuda.get_device_properties(0).total_memory * 1e-9 >= 40 or is_xformers_available():
# choices.append('ESD-u')
self.train_method_input = gr.Dropdown(
choices=choices,
value='ESD-x',
label='Train Method',
info='Method of training'
)
self.neg_guidance_input = gr.Number(
value=1,
label="Negative Guidance",
info='Guidance of negative training used to train'
)
self.iterations_input = gr.Number(
value=150,
precision=0,
label="Iterations",
info='iterations used to train'
)
self.lr_input = gr.Number(
value=1e-5,
label="Learning Rate",
info='Learning rate used to train'
)
self.train_seed_input = gr.Number(
value=-1,
label="Seed",
info="Set to a fixed number for reproducible training results, or use -1 to pick randomly"
)
with gr.Column():
self.train_memory_options = gr.Markdown(interactive=False,
r value='Performance and VRAM usage optimizations, may not work on all devices.')
with gr.Row():
self.train_use_adamw8bit_input = gr.Checkbox(label="8bit AdamW", value=True)
self.train_use_xformers_input = gr.Checkbox(label="xformers", value=True)
self.train_use_amp_input = gr.Checkbox(label="AMP", value=True)
self.train_use_gradient_checkpointing_input = gr.Checkbox(label="Gradient checkpointing", value=True)
with gr.Column(scale=1):
self.train_status = gr.Button(value='', variant='primary', label='Status', interactive=False)
self.train_button = gr.Button(
value="Train",
)
self.download = gr.Files()
with gr.Tab("Export") as export_column:
with gr.Row():
self.explain_train= gr.Markdown(interactive=False,
value='Export a model to Diffusers format. Please enter the base model and select the editing weights.')
with gr.Row():
with gr.Column(scale=3):
self.base_repo_id_or_path_input_export = gr.Text(
label="Base model",
value="CompVis/stable-diffusion-v1-4",
info="Path or huggingface repo id of the base model that this edit was done against"
)
self.model_dropdown_export = gr.Dropdown(
label="ESD Model",
choices=list(model_map.keys()),
value='Van Gogh',
interactive=True
)
self.save_path_input_export = gr.Text(
label="Output path",
placeholder="./exported_models/model_name",
info="Path to export the model to. A diffusers folder will be written to this location."
)
self.save_half_export = gr.Checkbox(
label="Save as fp16"
)
with gr.Column(scale=1):
self.export_button = gr.Button(
value="Export",
)
self.infr_button.click(self.inference, inputs = [
self.prompt_input_infr,
self.negative_prompt_input_infr,
self.seed_infr,
self.img_width_infr,
self.img_height_infr,
self.model_dropdown,
self.base_repo_id_or_path_input_infr
],
outputs=[
self.image_new,
self.image_orig
]
)
self.train_button.click(self.train, inputs = [
self.train_model_input,
self.train_img_size_input,
self.prompt_input,
self.train_method_input,
self.neg_guidance_input,
self.iterations_input,
self.lr_input,
self.train_use_adamw8bit_input,
self.train_use_xformers_input,
self.train_use_amp_input,
self.train_use_gradient_checkpointing_input,
self.train_seed_input,
],
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
)
self.export_button.click(self.export, inputs = [
self.model_dropdown_export,
self.base_repo_id_or_path_input_export,
self.save_path_input_export,
self.save_half_export
],
outputs=[self.export_button]
)
def train(self, repo_id_or_path, img_size, prompt, train_method, neg_guidance, iterations, lr,
use_adamw8bit=True, use_xformers=False, use_amp=False, use_gradient_checkpointing=False,
seed = -1,
pbar = gr.Progress(track_tqdm=True)):
if self.training:
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
print(f"Training {repo_id_or_path} at {img_size} to remove '{prompt}'.")
print(f" {train_method}, negative guidance {neg_guidance}, lr {lr}, {iterations} iterations.")
print(f" {'✅' if use_gradient_checkpointing else '❌'} gradient checkpointing")
print(f" {'✅' if use_amp else '❌'} AMP")
print(f" {'✅' if use_xformers else '❌'} xformers")
print(f" {'✅' if use_adamw8bit else '❌'} 8-bit AdamW")
if train_method == 'ESD-x':
modules = ".*attn2$"
frozen = []
elif train_method == 'ESD-u':
modules = "unet$"
frozen = [".*attn2$", "unet.time_embedding$", "unet.conv_out$"]
elif train_method == 'ESD-self':
modules = ".*attn1$"
frozen = []
# build a save path, ensure it isn't in use
while True:
randn = torch.randint(1, 10000000, (1,)).item()
options = f'{"a8" if use_adamw8bit else ""}{"AM" if use_amp else ""}{"xf" if use_xformers else ""}{"gc" if use_gradient_checkpointing else ""}'
save_path = f"models/{prompt.lower().replace(' ', '')}_{train_method}_ng{neg_guidance}_lr{lr}_iter{iterations}_seed{seed}_{options}__{randn}.pt"
if not os.path.exists(save_path):
break
# repeat until a not-in-use path is found
try:
self.training = True
train(repo_id_or_path, img_size, prompt, modules, frozen, iterations, neg_guidance, lr, save_path,
use_adamw8bit, use_xformers, use_amp, use_gradient_checkpointing, seed=seed)
finally:
self.training = False
torch.cuda.empty_cache()
new_model_name = f'{os.path.basename(save_path)}'
model_map[new_model_name] = save_path
return [gr.update(interactive=True, value='Train'),
gr.update(value=f'Done Training! Try your model ({new_model_name}) in the "Test" tab'),
save_path,
gr.Dropdown.update(choices=list(model_map.keys()), value=new_model_name)]
def export(self, model_name, base_repo_id_or_path, save_path, save_half):
model_path = model_map[model_name]
checkpoint = torch.load(model_path)
diffuser = StableDiffuser(scheduler='DDIM',
keep_pipeline=True,
repo_id_or_path=base_repo_id_or_path
).eval()
finetuner = FineTunedModel.from_checkpoint(diffuser, checkpoint).eval()
with finetuner:
if save_half:
diffuser = diffuser.half()
diffuser.pipeline.to(torch.float16, torch_device=diffuser.device)
diffuser.pipeline.save_pretrained(save_path)
def inference(self, prompt, negative_prompt, seed, width, height, model_name, base_repo_id_or_path, pbar = gr.Progress(track_tqdm=True)):
seed = seed or 42
model_path = model_map[model_name]
checkpoint = torch.load(model_path)
self.diffuser = StableDiffuser(scheduler='DDIM', repo_id_or_path=base_repo_id_or_path).to('cuda').eval().half()
finetuner = FineTunedModel.from_checkpoint(self.diffuser, checkpoint).eval().half()
generator = torch.manual_seed(seed)
torch.cuda.empty_cache()
images = self.diffuser(
prompt,
negative_prompt,
width=width,
height=height,
n_steps=50,
generator=generator
)
orig_image = images[0][0]
torch.cuda.empty_cache()
with finetuner:
images = self.diffuser(
prompt,
negative_prompt,
width=width,
height=height,
n_steps=50,
generator=generator
)
edited_image = images[0][0]
del finetuner
torch.cuda.empty_cache()
return edited_image, orig_image
demo = Demo()
|