File size: 17,924 Bytes
640a27b
f71eb42
0002379
fc73e59
 
 
a24b16a
 
fc73e59
81ccbca
500d414
506badf
0002379
e3abd80
0002379
97b401e
 
0002379
 
 
daebf8f
 
0002379
 
 
 
 
 
5349660
506badf
 
 
2688a68
506badf
 
 
5349660
843b14b
 
 
 
88c9af4
7c89716
f71eb42
f0cf9b0
 
7c89716
f0cf9b0
a24b16a
5349660
 
506badf
 
 
 
 
 
f0cf9b0
 
5349660
f0cf9b0
 
 
5349660
ac5ee04
5349660
 
 
 
0166058
 
 
 
 
 
0002379
 
 
0166058
5349660
 
 
 
0a3fdbd
5349660
 
 
 
 
 
 
 
d8ffb68
 
 
 
 
 
 
 
 
 
0002379
 
 
 
 
 
 
 
 
 
 
5349660
 
0166058
5349660
 
 
0166058
843b14b
5349660
 
 
 
 
 
 
 
 
 
 
 
 
f0cf9b0
843b14b
5349660
ac5ee04
843b14b
f0cf9b0
 
5349660
 
0002379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5349660
 
 
 
 
98bb9c3
ab11bdd
 
 
98bb9c3
5349660
98bb9c3
5349660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94be4c7
 
 
 
 
5349660
94be4c7
 
 
 
 
 
 
 
fc73e59
5349660
 
81ccbca
 
5349660
 
 
 
 
 
d8ffb68
 
 
94be4c7
d8ffb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5349660
 
0002379
81ccbca
d8ffb68
 
0002379
 
5349660
 
 
 
 
 
 
0002379
 
5349660
 
 
 
fc73e59
 
 
 
94be4c7
 
5349660
ab11bdd
5349660
d8ffb68
 
 
 
 
 
 
 
843b14b
fc73e59
ab11bdd
94be4c7
fc73e59
7c89716
88c9af4
81ccbca
7c89716
ab11bdd
 
 
 
 
 
 
a24b16a
 
5349660
 
 
 
 
843b14b
a24b16a
 
5349660
a24b16a
94be4c7
 
 
 
 
 
 
 
a24b16a
fc73e59
 
 
94be4c7
fc73e59
 
a24b16a
81ccbca
a24b16a
94be4c7
fc73e59
a24b16a
ab11bdd
 
 
fc73e59
a24b16a
d8ffb68
 
 
ab11bdd
 
 
 
 
d8ffb68
 
ab11bdd
 
 
d8ffb68
a24b16a
d8ffb68
c19b710
7c89716
81ccbca
 
a24b16a
0002379
7c89716
843b14b
d8ffb68
 
 
843b14b
 
0002379
d8ffb68
 
843b14b
7c89716
843b14b
 
 
f71eb42
7c89716
a24b16a
 
0002379
d8ffb68
 
a24b16a
7c89716
a24b16a
843b14b
 
7c89716
f71eb42
 
843b14b
 
 
f0cf9b0
843b14b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import gradio as gr
import torch
import os

from diffusers.utils import is_xformers_available

from finetuning import FineTunedModel
from StableDiffuser import StableDiffuser
from memory_efficiency import MemoryEfficiencyWrapper
from train import train
    
import os
model_map = {'Van Gogh': 'models/vangogh.pt',
             'Pablo Picasso': 'models/pablopicasso.pt',
             'Car': 'models/car.pt',
             'Garbage Truck': 'models/garbagetruck.pt',
             'French Horn': 'models/frenchhorn.pt',
             'Kilian Eng': 'models/kilianeng.pt',
             'Thomas Kinkade': 'models/thomaskinkade.pt',
             'Tyler Edlin': 'models/tyleredlin.pt',
             'Kelly McKernan': 'models/kellymckernan.pt',
             'Rembrandt': 'models/rembrandt.pt' }
for model_file in os.listdir('models'):
    path = 'models/' + model_file
    if any([existing_path == path for existing_path in model_map.values()]):
        continue
    model_map[model_file] = path


ORIGINAL_SPACE_ID = 'baulab/Erasing-Concepts-In-Diffusion'
SPACE_ID = os.getenv('SPACE_ID')

SHARED_UI_WARNING = f'''## Attention - Training using the ESD-u method does not work in this shared UI. You can either duplicate and use it with a gpu with at least 40GB, or clone this repository to run on your own machine.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''


class Demo:

    def __init__(self) -> None:

        self.training = False
        self.generating = False

        with gr.Blocks() as demo:
            self.layout()
            demo.queue(concurrency_count=5).launch()


    def layout(self):

        with gr.Row():

            if SPACE_ID == ORIGINAL_SPACE_ID:

                self.warning = gr.Markdown(SHARED_UI_WARNING)
          
        with gr.Row():
                
            with gr.Tab("Test") as inference_column:

                with gr.Row():

                    self.explain_infr = gr.Markdown(interactive=False, 
                                      value='This is a demo of [Erasing Concepts from Stable Diffusion](https://erasing.baulab.info/).  To try out a model where a concept has been erased, select a model and enter any prompt.  For example, if you select the model "Van Gogh" you can generate images for the prompt "A portrait in the style of Van Gogh" and compare the erased and unerased models.  We have also provided several other pre-fine-tuned models with artistic styles and objects erased (Check out the "ESD Model" drop-down). You can also train and run your own custom models. Check out the "train" section for custom erasure of concepts.')

                with gr.Row():

                    with gr.Column(scale=1):

                        self.prompt_input_infr = gr.Text(
                            placeholder="Enter prompt...",
                            label="Prompt",
                            info="Prompt to generate"
                        )
                        self.negative_prompt_input_infr = gr.Text(
                            label="Negative prompt"
                        )

                        with gr.Row():

                            self.model_dropdown = gr.Dropdown(
                                label="ESD Model",
                                choices= list(model_map.keys()),
                                value='Van Gogh',
                                interactive=True
                            )

                            self.seed_infr = gr.Number(
                                label="Seed",
                                value=42
                            )
                            self.img_width_infr = gr.Slider(
                                label="Image width",
                                minimum=256,
                                maximum=1024,
                                value=512,
                                step=64
                            )

                            self.img_height_infr = gr.Slider(
                                label="Image height",
                                minimum=256,
                                maximum=1024,
                                value=512,
                                step=64
                            )

                        self.base_repo_id_or_path_input_infr = gr.Text(
                            label="Base model",
                            value="CompVis/stable-diffusion-v1-4",
                            info="Path or huggingface repo id of the base model that this edit was done against"
                        )

                    with gr.Column(scale=2):

                        self.infr_button = gr.Button(
                            value="Generate",
                            interactive=True
                        )

                        with gr.Row():

                            self.image_new = gr.Image(
                                label="ESD",
                                interactive=False
                            )
                            self.image_orig = gr.Image(
                                label="SD",
                                interactive=False
                            )

            with gr.Tab("Train") as training_column:

                with gr.Row():

                    self.explain_train= gr.Markdown(interactive=False, 
                                      value='In this part you can erase any concept from Stable Diffusion.   Enter a prompt for the concept or style you want to erase, and select ESD-x if you want to focus erasure on prompts that mention the concept explicitly. [NOTE: ESD-u is currently unavailable in this space. But you can duplicate the space and run it on GPU with VRAM >40GB for enabling ESD-u]. With default settings, it takes about 15 minutes to fine-tune the model; then you can try inference above or download the weights.  The training code used here is slightly different than the code tested in the original paper.  Code and details are at [github link](https://github.com/rohitgandikota/erasing).')

                with gr.Row():

                    with gr.Column(scale=3):

                        self.train_model_input = gr.Text(
                            label="Model to Edit",
                            value="CompVis/stable-diffusion-v1-4",
                            info="Path or huggingface repo id of the model to edit"
                        )

                        self.train_img_size_input = gr.Slider(
                            value=512,
                            step=64,
                            minimum=256,
                            maximum=1024,
                            label="Image Size",
                            info="Image size for training, should match the model's native image size"
                        )

                        self.prompt_input = gr.Text(
                            placeholder="Enter prompt...",
                            label="Prompt to Erase",
                            info="Prompt corresponding to concept to erase"
                        )

                        choices = ['ESD-x', 'ESD-self', 'ESD-u']
                        #if torch.cuda.get_device_properties(0).total_memory * 1e-9 >= 40 or is_xformers_available():
                        #    choices.append('ESD-u')
                    
                        self.train_method_input = gr.Dropdown(
                            choices=choices,
                            value='ESD-x',
                            label='Train Method',
                            info='Method of training'
                        )

                        self.neg_guidance_input = gr.Number(
                            value=1,
                            label="Negative Guidance",
                            info='Guidance of negative training used to train'
                        )

                        self.iterations_input = gr.Number(
                            value=150,
                            precision=0,
                            label="Iterations",
                            info='iterations used to train'
                        )

                        self.lr_input = gr.Number(
                            value=1e-5,
                            label="Learning Rate",
                            info='Learning rate used to train'
                        )
                        self.train_seed_input = gr.Number(
                            value=-1,
                            label="Seed",
                            info="Set to a fixed number for reproducible training results, or use -1 to pick randomly"
                        )

                        with gr.Column():
                            self.train_memory_options = gr.Markdown(interactive=False,
r                                value='Performance and VRAM usage optimizations, may not work on all devices.')
                            with gr.Row():
                                self.train_use_adamw8bit_input = gr.Checkbox(label="8bit AdamW", value=True)
                                self.train_use_xformers_input = gr.Checkbox(label="xformers", value=True)
                                self.train_use_amp_input = gr.Checkbox(label="AMP", value=True)
                                self.train_use_gradient_checkpointing_input = gr.Checkbox(label="Gradient checkpointing", value=True)

                    with gr.Column(scale=1):

                        self.train_status = gr.Button(value='', variant='primary', label='Status', interactive=False)

                        self.train_button = gr.Button(
                            value="Train",
                        )

                        self.download = gr.Files()

            with gr.Tab("Export") as export_column:
                with gr.Row():
                    self.explain_train= gr.Markdown(interactive=False,
                        value='Export a model to Diffusers format. Please enter the base model and select the editing weights.')

                with gr.Row():

                    with gr.Column(scale=3):
                        self.base_repo_id_or_path_input_export = gr.Text(
                            label="Base model",
                            value="CompVis/stable-diffusion-v1-4",
                            info="Path or huggingface repo id of the base model that this edit was done against"
                        )

                        self.model_dropdown_export = gr.Dropdown(
                            label="ESD Model",
                            choices=list(model_map.keys()),
                            value='Van Gogh',
                            interactive=True
                        )

                        self.save_path_input_export = gr.Text(
                            label="Output path",
                            placeholder="./exported_models/model_name",
                            info="Path to export the model to. A diffusers folder will be written to this location."
                        )

                        self.save_half_export = gr.Checkbox(
                            label="Save as fp16"
                        )

                    with gr.Column(scale=1):
                        self.export_button = gr.Button(
                            value="Export",
                        )

        self.infr_button.click(self.inference, inputs = [
            self.prompt_input_infr,
            self.negative_prompt_input_infr,
            self.seed_infr,
            self.img_width_infr,
            self.img_height_infr,
            self.model_dropdown,
            self.base_repo_id_or_path_input_infr
            ],
            outputs=[
                self.image_new,
                self.image_orig
            ]
        )
        self.train_button.click(self.train, inputs = [
            self.train_model_input,
            self.train_img_size_input,
            self.prompt_input,
            self.train_method_input, 
            self.neg_guidance_input,
            self.iterations_input,
            self.lr_input,
            self.train_use_adamw8bit_input,
            self.train_use_xformers_input,
            self.train_use_amp_input,
            self.train_use_gradient_checkpointing_input,
            self.train_seed_input,
        ],
        outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
        )
        self.export_button.click(self.export, inputs = [
            self.model_dropdown_export,
            self.base_repo_id_or_path_input_export,
            self.save_path_input_export,
            self.save_half_export
        ],
        outputs=[self.export_button]
        )

    def train(self, repo_id_or_path, img_size, prompt, train_method, neg_guidance, iterations, lr,
              use_adamw8bit=True, use_xformers=False, use_amp=False, use_gradient_checkpointing=False,
              seed = -1,
              pbar = gr.Progress(track_tqdm=True)):

        if self.training:
            return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]

        print(f"Training {repo_id_or_path} at {img_size} to remove '{prompt}'.")
        print(f"  {train_method}, negative guidance {neg_guidance}, lr {lr}, {iterations} iterations.")
        print(f" {'✅' if use_gradient_checkpointing else '❌'} gradient checkpointing")
        print(f" {'✅' if use_amp else '❌'} AMP")
        print(f" {'✅' if use_xformers else '❌'} xformers")
        print(f" {'✅' if use_adamw8bit else '❌'} 8-bit AdamW")

        if train_method == 'ESD-x':
            modules = ".*attn2$"
            frozen = []

        elif train_method == 'ESD-u':
            modules = "unet$"
            frozen = [".*attn2$", "unet.time_embedding$", "unet.conv_out$"]   

        elif train_method == 'ESD-self':
            modules = ".*attn1$"
            frozen = []

        # build a save path, ensure it isn't in use
        while True:
            randn = torch.randint(1, 10000000, (1,)).item()
            options = f'{"a8" if use_adamw8bit else ""}{"AM" if use_amp else ""}{"xf" if use_xformers else ""}{"gc" if use_gradient_checkpointing else ""}'
            save_path = f"models/{prompt.lower().replace(' ', '')}_{train_method}_ng{neg_guidance}_lr{lr}_iter{iterations}_seed{seed}_{options}__{randn}.pt"
            if not os.path.exists(save_path):
                break
            # repeat until a not-in-use path is found

        try:
            self.training = True
            train(repo_id_or_path, img_size, prompt, modules, frozen, iterations, neg_guidance, lr, save_path,
                use_adamw8bit, use_xformers, use_amp, use_gradient_checkpointing, seed=seed)
        finally:
            self.training = False

        torch.cuda.empty_cache()

        new_model_name = f'{os.path.basename(save_path)}'
        model_map[new_model_name] = save_path

        return [gr.update(interactive=True, value='Train'),
                gr.update(value=f'Done Training! Try your model ({new_model_name}) in the "Test" tab'),
                save_path,
                gr.Dropdown.update(choices=list(model_map.keys()), value=new_model_name)]

    def export(self, model_name, base_repo_id_or_path, save_path, save_half):
        model_path = model_map[model_name]
        checkpoint = torch.load(model_path)
        diffuser = StableDiffuser(scheduler='DDIM',
                                       keep_pipeline=True,
                                       repo_id_or_path=base_repo_id_or_path
                                       ).eval()
        finetuner = FineTunedModel.from_checkpoint(diffuser, checkpoint).eval()
        with finetuner:
            if save_half:
                diffuser = diffuser.half()
                diffuser.pipeline.to(torch.float16, torch_device=diffuser.device)
            diffuser.pipeline.save_pretrained(save_path)


    def inference(self, prompt, negative_prompt, seed, width, height, model_name, base_repo_id_or_path, pbar = gr.Progress(track_tqdm=True)):
        
        seed = seed or 42
        model_path = model_map[model_name]
        checkpoint = torch.load(model_path)

        self.diffuser = StableDiffuser(scheduler='DDIM', repo_id_or_path=base_repo_id_or_path).to('cuda').eval().half()
        finetuner = FineTunedModel.from_checkpoint(self.diffuser, checkpoint).eval().half()

        generator = torch.manual_seed(seed)

        torch.cuda.empty_cache()
        images = self.diffuser(
            prompt,
            negative_prompt,
            width=width,
            height=height,
            n_steps=50,
            generator=generator
        )
        orig_image = images[0][0]

        torch.cuda.empty_cache()
        with finetuner:
            images = self.diffuser(
                prompt,
                negative_prompt,
                width=width,
                height=height,
                n_steps=50,
                generator=generator
            )
        edited_image = images[0][0]

        del finetuner
        torch.cuda.empty_cache()

        return edited_image, orig_image


demo = Demo()